Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes.
Ubiquitin is an essential signaling protein that controls many different cellular processes. While cellular ubiquitin levels normally cycle between pools of free and conjugated ubiquitin, the balance of these ubiquitin pools can be shifted by exposure to a variety of cellular stresses. Altered ubiquitin pools are also observed in several neurological disorders, suggesting that imbalances in ubiquitin homeostasis may contribute to neuronal dysfunction. To examine the effects of increased ubiquitin levels on the mammalian nervous system, we generated transgenic mice that express ubiquitin under the control of the Thy1.2 promoter. While we did not detect global changes in levels of ubiquitin conjugates in the hippocampus, we found that increasing ubiquitin levels reduced AMPA (GRIA1-4) receptor expression without affecting the levels of NMDA (GRIN) or GABA A receptors. Ubiquitin over-expression also negatively impacted hippocampus-dependent learning and memory as well as baseline excitability and synaptic plasticity at hippocampal CA3-CA1 synapses. These changes occurred in a dose-dependent manner in that mice with the highest levels of ubiquitin over-expression had the greatest deficits in synaptic function and were the most impaired in the learning and memory tasks. As chronic elevation of ubiquitin expression in neurons is sufficient to cause changes in synaptic function and cognition, altered ubiquitin homeostasis may be an important contributor to the stress-induced changes observed in neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.