Morphological variation related to differential loading is well known for many craniomandibular elements. Yet, the function of the hard palate, and in particular the manner in which cortical and trabecular bone of the palate respond to masticatory loads, remains more ambiguous. Here, experimental data are presented that address the naturalistic influence of biomechanical loading on the postweaning development and structure of the hard palate. A rabbit model was used to test the hypothesis that variation in the morphology of the hard palate is linked to variation in masticatory stresses. Rabbit siblings were divided as weanlings into soft and hard/tough dietary treatment groups of 10 subjects each and were raised for 15 weeks until subadulthood. MicroCT analyses indicate that rabbits subjected to elevated masticatory loading developed hard palates with significantly greater bone area, greater cortical bone thickness along the oral lamina, and thicker anterior palates. Such diet-induced levels of palatal plasticity are comparable to those for other masticatory elements, which likely reflect osteogenic responses for maintaining the functional integrity of the palate vis-à -vis elevated stresses during unilateral mastication. These data support a role for mechanical loading in the determination of palatal morphology, especially its internal structure, in living and fossil mammals such as the hominin Paranthropus. Furthermore, these findings have potential implications for the evolution of the mammalian secondary hard palate as well as for clinical considerations of human oral pathologies.
The high incidence of BB2 receptor (BB2r) expression in various cancers has prompted investigators to pursue the development of BB2r-targeted agents for diagnostic imaging, chemotherapy and radiotherapy. Development of BB2r-targeted agents, based on the bombesin (BBN) peptide, has largely involved the use of the bifunctional chelate approach in which the linking group serves several key roles including pharmacokinetic modification. Understanding the in vivo properties of the various pharmacokinetic modifying linking groups is crucial for developing BB2r-targeted agents with improved targeting and clearance characteristics. The goal of this study was to systematically evaluate the pharmacokinetic profile of aliphatic hydrocarbon, aromatic and polyethylene glycol (ether) functional groups in order to obtain a better understanding of the in vivo properties of these pharmacokinetic modifiers. Specifically, we synthesized six radioconjugates with the structure 111 In-DOTA-X-BBN(7-14)NH 2 , where X = 8-aminooctanoic acid (8-AOC), 5-amino-
The evolutionary significance of cranial form and robusticity in early Homo has been variously attributed to allometry, encephalization, metabolic factors, locomotor activity, and masticatory forces. However, the influence of such factors is variably understood. To evaluate the effect of masticatory loading on neurocranial form, sibling groups of weanling white rabbits were divided into two cohorts of 10 individuals each and raised on either a soft diet or a hard/tough diet for 16 weeks until subadulthood. Micro-CT was used to quantify and visualize morphological variation between treatment groups. Results reveal trends (P < 0.10) for greater outer table thickness of the frontal bones, zygomatic height, and cranial globularity in rabbits raised on a hard/tough diet. Furthermore, analyses of three-dimensional coordinate landmark data indicate that the basicrania of hard/tough diet rabbits exhibit more robust middle cranial fossae and pterygoid plates, as well as altered overall morphology of the caudal cranial fossa. Thus, long term increases in masticatory loads may result in thickening of the bones of the neurocranial vault and/or altering the curvature of the walls. Differences in cranial regions not directly associated with the generation or resistance of masticatory forces (i.e., frontal bone, basicranium) may be indirectly correlated with diet-induced variation in maxillomandibular morphology. These findings also suggest that long-term variation in masticatory forces associated with differences in dietary properties can contribute to the complex and multifactorial development of neurocranial morphology. Anat Rec, 293:630-641, 2010. V V C 2010 Wiley-Liss, Inc.Key words: cranial vault thickness; cranial globularity; dietary properties; masticatory stresses/loads; plasticity; rabbitsSince the origin of the genus Homo, the craniofacial skeleton has undergone a remarkable amount of phenotypic evolution. Obvious changes, such as expansion of the neurocranium and reduction of the facial skeleton, are accompanied by a suite of localized and/or cross-sectional features, which distinguish modern humans from
Introduction-Human breast cancer, from which the T-47D cell line was derived, is known to overexpress the gastrin-releasing peptide receptor (GRPR) in some cases. Bombesin (BBN), an agonist for the GRPR, has been appended with a radionuclide capable of positron-emission tomography (PET) imaging and therapy. 64 Cu-NO2A-8-Aoc-BBN(7-14)NH 2 (NO2A=1,4,7-triazacyclononane-1,4-diacetate) has produced high-quality microPET images of GRPR-positive breast cancer xenografted tumors in mice.Methods-The imaging probe was synthesized by solid-phase peptide synthesis followed by manual conjugation of the 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) bifunctional chelator and radiolabeling in aqueous solution. The radiolabeled conjugate was subjected to in vitro and in vivo studies to determine its specificity for the GRPR and its pharmacokinetic profile. A T-47D tumor-bearing mouse was imaged with microPET/CT and microMRI imaging.Results-The 64 Cu-NO2A-8-Aoc-BBN(7-14)NH 2 targeting vector was determined to specifically localize in GRPR-positive tissue. Accumulation was observed in the tumor in sufficient quantities to allow for identification of tumors in microPET imaging procedures. For example, uptake and retention in T-47D xenografts at 1, 4 and 24 h were determined to be 2.27±0.08, 1.35±0.14 and 0.28 ±0.07 % ID/g, respectively. Conclusions-The 64 Cu-NO2A-8-Aoc-BBN(7-14)NH 2 produced high-quality microPET images. The pharmacokinetic profile justifies investigation of this bioconjugate as a potentially useful diagnostic/therapeutic agent. Additionally, the bioconjugate would serve as a good starting point for modification and optimization of similar agents to maximize tumor uptake and minimize nontarget accumulation. NIH Public Access
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.