A system must continue to meet stakeholder needs throughout its service life to maintain value. Excess that is embedded into components during the design phase can enable in-service system evolution when new or changed requirements are introduced. However, while the concept of excess has been established in the literature, it is not clear how to identify and quantify the set of excesses in a particular design. This paper uses component properties and functional flow information to map and quantify the excess that exists within a system. Understanding the functional flow relationships between components allows for the bottlenecks at component interfaces to be identified. Those flows that do not limit the potential evolvability of a system can be removed from consideration, allowing for critical interface parameters to be highlighted and their capabilities quantified. The method is demonstrated on a consumer heat gun, where quantifying the excess within components allows for a reduced map to be created with irrelevant flows removed. Finally, changes to the system are explored to demonstrate how knowledge of component excess can be used to initially validate a proposed evolution.
The wheat curl mite (WCM) is a vector of three important wheat viruses in the U.S. Great Plains, wheat streak mosaic virus (WSMV), triticum mosaic virus (TriMV), and High Plains wheat mosaic virus (HPWMoV). This study was conducted to determine the current profile of WCM and WCM-transmitted viruses of wheat and their occurrence in Colorado, including novel wheat viruses via virome analysis. There was a high rate of virus incidence in symptomatic wheat samples collected in 2019 (95%) and 2020 (77%). Single infection of WSMV was most common in both years followed by coinfection with WSMV + TriMV and WSMV + HPWMoV. Both Type 1 and Type 2 mite genotypes were found in Colorado. There was high genetic diversity of WSMV and HPWMoV isolates, whereas TriMV isolates showed minimal sequence variation. Analysis of WSMV isolates revealed novel virus variants including one isolate from a variety trial, where severe disease symptoms were observed on wheat varieties carrying Wsm2, a known virus resistance loci. Virome analysis identified between two to four sequence variants of all eight RNA segments of HPWMoV, which suggests co-occurrence of multiple genotypes within host populations and presence of a possibly novel variant of HPWMoV. A possible novel virus, Tombusviridae sp. and several mycoviruses were identified. Overall, the data presented here highlights the need to define the effect of novel WCM-transmitted virus variants on disease severity, as well as the role of novel viruses.
The wheat curl mite (WCM)-transmissible wheat streak disease complex is the most serious disease of wheat in the U.S. Great Plains. In the current study, we determined the genetic variability in WCM and mite-transmitted viruses in Colorado and identified sources of resistance in Colorado wheat germplasm to wheat streak disease complex. We identified two distinct genotypes of WCM, Type 1 and Type 2 based on the ribosomal ITS1 region. Both genotypes were found to co-exist throughout the wheat producing regions of Colorado. Analysis of the whole genome and partial coat protein sequences revealed rich diversity of wheat streak mosaic virus (WSMV) and High Plains wheat mosaic virus (HPWMoV) isolates collected from Colorado, whereas triticum mosaic virus (TriMV) showed low sequence variability. Analysis of WSMV isolates revealed two novel isolates and one that was 100% similar to a new variant of WSMV from Kansas. Interestingly, between 2-4 genotypes of all 8 RNA segments of HPWMoV were identified, which suggests new variants of emaraviruses and co-occurrence of multiple strains within host populations. Several novel viruses including mycoviruses were identified for the first time in Colorado. We found variation in WSMV resistance among wheat varieties; however a variety that harbored dual resistance to mite and WSMV had lower virus titer compared to varieties that contained single resistance gene. This suggests that pyramiding genes will ensure improved and durable resistance. Future research may be aimed at elucidating the dynamics, diversity, and distribution of the new WSMV and HPWMoV isolates and their responses to wheat genotypes.
For engineered systems, one of the first decisions a designer must make is the architecture that will solve the established high level function. In most cases, this can be accomplished in a multitude of ways, with each original architecture having strengths and weaknesses. This paper explores how the architecture choice for a system impacts the ability to evolve and meet future needs. The lessons learned from this paper are extracted from a case study where three systems that perform the same task via different architectural solutions are considered. These systems are them compared to understand how well they adhere to, or violate, the Empirically-Derived Principles for Designing Products with Flexibility for Future Evolution introduced by Tilstra et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.