New potent indolylarylsulfone (IAS) HIV-1 NNRTIs were obtained by coupling natural and unnatural amino acids to the 2-carboxamide and introducing different electron-withdrawing substituents at position 4 and 5 of the indole nucleus. The new IASs inhibited the HIV-1 replication in human T-lymphocyte (CEM) cells at low/subnanomolar concentration and were weakly cytostatic. Against the mutant L100I, K103N, and Y181C RT HIV-1 strains in CEM cells, sulfones 3, 4, 19, 27, and 31 were comparable to EFV. The new IASs were inhibitors to Coxsackie B4 virus at low micromolar (2-9 microM) concentrations. Superimposition of PLANTS docked conformations of IASs 19 and 9 revealed different hydrophobic interactions of the 3,5-dimethylphenyl group, for which a staking interaction with Tyr181 aromatic side chain was observed. The binding mode of 19 was not affected by the L100I mutation and was consistent with the interactions reported for the WT strain.
A hit optimization protocol applied to the first nonnucleoside inhibitor of the ATPase activity of human DEAD-box RNA helicase DDX3 led to the design and synthesis of second-generation rhodanine derivatives with better inhibitory activity toward cellular DDX3 and HIV-1 replication. Additional DDX3 inhibitors were identified among triazine compounds. Biological data were rationalized in terms of structure-activity relationships and docking simulations. Antiviral activity and cytotoxicity of selected DDX3 inhibitors are reported and discussed. A thorough analysis confirmed human DDX3 as a valid anti-HIV target. The compounds described herein represent a significant advance in the pursuit of novel drugs that target HIV-1 host cofactors.
Starting from our in-house library of pyrazolo[3,4-d]pyrimidines, a cross-docking simulation was conducted on Bcr-Abl T315I mutant. Among the selected compounds (2a-e), the 4-bromo derivative 2b showed the best activity against the Bcr-Abl T315I mutant. Deeper computational studies highlighted the importance of the bromine atom in the para position of the N1 side chain phenyl ring for the interaction with the T315I mutant. A series of 4-bromo derivatives was thus synthesized and biologically evaluated. Compound 2j showed a good balance of different ADME properties, high activity in cell-free assays, and a submicromolar potency against T315I Bcr-Abl expressing cells. In addition, it was converted into a water-soluble formulation by liposome encapsulation, preserving a good activity on leukemic T315I cells and avoiding the use of DMSO as solubilizing agent. In vivo studies on mice inoculated with 32D-T315I cells and treated with 2j showed a more than 50% reduction in tumor volumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.