In order to survive in an oxygen environment, aerobic organisms have developed numerous mechanisms to protect against oxygen radicals and singlet oxygen. One such mechanism, which appears to have attained particular significance during primate evolution, is the direct scavenging of oxygen radicals, singlet oxygen, oxo-haem oxidants and hydroperoxyl radicals by uric acid. In the present paper we demonstrate that another important 'antioxidant' property of uric acid is the ability to form stable co-ordination complexes with iron ions. Formation of urate-Fe3+ complexes dramatically inhibits Fe3+-catalysed ascorbate oxidation, as well as lipid peroxidation in liposomes and rat liver microsomal fraction. In contrast with antioxidant scavenger reactions, the inhibition of ascorbate oxidation and lipid peroxidation provided by urate's ability to bind iron ions does not involve urate oxidation. Association constants (Ka) for urate-iron ion complexes were determined by fluorescence-quenching techniques. The Ka for a 1:1 urate-Fe3+ complex was found to be 2.4 X 10(5), whereas the Ka for a 1:1 urate-Fe2+ complex was determined to be 1.9 X 10(4). Our experiments also revealed that urate can form a 2:1 complex with Fe3+ with an association constant for the second urate molecule (K'a) of approx. 4.5 X 10(5). From these data we estimate an overall stability constant (Ks approximately equal to Ka X K'a) for urate-Fe3+ complexes of approx. 1.1 X 10(11). Polarographic measurements revealed that (upon binding) urate decreases the reduction potential for the Fe2+/Fe3+ half-reaction from -0.77 V to -0.67 V. Thus urate slightly diminishes the oxidizing potential of Fe3+. The present results provide a mechanistic explanation for our previous report that urate protects ascorbate from oxidation in human blood. The almost saturating concentration of urate normally found in human plasma (up to 0.6 mM) represents 5-10 times the plasma ascorbate concentration, and is orders of magnitude higher than the 'free' iron ion concentration. These considerations point to the physiological significance of our findings.
Gamma-glutamyltranspeptidase-positive hepatocyte foci were produced in female rats given a single dose of diethylnitrosamine neonatally after birth and, after weaning, a diet containing phenobarbitone for 30 wk. The nucleator method, a new stereological approach, provided an efficient, unbiased estimate of mean cell volume in focal lesions and extrafocal areas. It also provided an unbiased sample of cells to estimate hepatocyte nuclear volume and the percentage of binucleated cells. The results showed an increase in the mean volume of mononucleated cells--from 4,700 micron3 in extrafocal areas to 12,700 micron2 in foci--and of binucleated cells--from 6,900 micron3 to 25,000 micron3. This demonstrated the hypertrophic effect of the carcinogenic treatment in focal lesions. A striking reduction in the proportion of binucleated cells was also observed in the preneoplastic lesions. Nuclear volume measurements from mononucleated and binucleated hepatocytes were used to assess ploidy. An apparent increase in nuclear ploidy, with no change in cellular ploidy, was noted in focal tissue when compared with nonfocal tissue. This appeared to be caused by an increase in mononucleated tetraploid cells and a reduction in binucleated cells with two diploid nuclei, indicating an altered mitotic mechanism in focal lesions. The significance of these changes in cell volume, apparent ploidy levels and binuclearity in preneoplastic foci is discussed in relation to the hepatocarcinogenic process.
Synergistic interactions have been reported in the carcinogenicity of two epoxy resin components to mouse skin. A mixture of bisphenol A diglycidylether and bis epoxycyclopentylether was highly carcinogenic, despite the fact that neither compound gave positive results when applied individually. To elucidate the mechanism of this synergistic interaction we have investigated the effects of bis epoxycyclopentylether upon the hydrolysis and DNA-binding of bisphenol A diglycidylether. This glycidylether was rapidly hydrolysed by microsomal and cytosolic fractions of mouse liver and skin. In three different mouse strains the specific epoxide hydrolase activities were 28.3-48.5; 33.0-38.8; 7.9-10.2 and 0.85-0.98 nmol/mg protein/min for liver microsomal and cytosolic and skin microsomal and cytosolic fractions respectively. This is the first demonstration of an epoxide hydrolase activity in skin cytosolic fractions. Bis epoxycyclopentylether inhibited the microsomal activities. This inhibition appeared to be slightly more effective with microsomal fractions from liver. The effect of this inhibition upon the binding of bisphenol A diglycidylether to mouse skin DNA was investigated using bisphenol A diglycidylether radiolabelled at two different positions. When high doses of bisphenol A diglycidylether were applied to the mouse skin one major DNA adduct was observed which was identified as a glycidaldehyde adduct. This adduct was not detectable at the lowest bisphenol A diglycidylether dose tested, unless bis epoxycyclopentylether was applied simultaneously. These findings suggest that glycidaldehyde may be formed from bisphenol A diglycidylether. At low doses, however, the epoxide groups are hydrolysed before glycidaldehyde can be formed, unless the epoxide hydrolase is inhibited. Such inhibition and the associated increased production of glycidaldehyde may account for the potentiation of the carcinogenic response in the epoxide mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.