The increasing penetration of Photovoltaic (PV) generation results in challenges regarding network operation, management and planning. Correspondingly, Distribution Network Operators (DNOs) are in the need of totally new understanding. The establishment of comprehensive standards for maximum PV integration into the network, without adversely impacting the normal operating conditions, is also needed. This review article provides an extensive review of the Hosting Capacity (HC) definitions based on different references and estimated HC with actual figures in different geographical areas and network conditions. Moreover, a comprehensive review of limiting factors and improvement methods for HC is presented along with voltage rise limits of different countries under PV integration. Peak load is the major reference used for HC definition and the prime limiting constraint for PV HC is the voltage violations. However, the varying definitions in different references lead to the conclusion that, neither the reference values nor the limiting factors are unique values and HC can alter depending on the reference, network conditions, topology, location, and PV deployment scenario.
Power distribution networks are transitioning from passive towards active networks considering the incorporation of distributed generation. Traditional energy networks require possible system upgrades due to the exponential growth of non-conventional energy resources. Thus, the cost concerns of the electric utilities regarding financial models of renewable energy sources (RES) call for the cost and benefit analysis of the networks prone to unprecedented RES integration. This paper provides an evaluation of photovoltaic (PV) hosting capacity (HC) subject to economical constraint by a probabilistic analysis based on Monte Carlo (MC) simulations to consider the stochastic nature of loads. The losses carry significance in terms of cost parameters, and this article focuses on HC investigation in terms of losses and their associated cost. The network losses followed a U-shaped trajectory with increasing PV penetration in the distribution network. In the investigated case networks, increased PV penetration reduced network costs up to around 40%, defined as a ratio to the feeding secondary transformer rating. Above 40%, the losses started to increase again and at 76–87% level, the network costs were the same as in the base cases of no PVs. This point was defined as the economical PV HC of the network. In the case of networks, this level of PV penetration did not yet lead to violations of network technical limits.
The burgeoning photovoltaics’ (PVs) penetration in the low voltage distribution networks can cause operational bottlenecks if the PV integration exceeds the threshold known as hosting capacity (HC). There has been no common consensus on defining HC, and its numerical value varies depending on the reference used. Therefore, this article compared the HC values of three types of networks in rural, suburban, and urban regions for different HC reference definitions. The comparison was made under balanced and unbalanced PV deployment scenarios and also for two different network loading conditions. A Monte Carlo (MC) simulation approach was utilized to consider the intermittency of PV power and varying loading conditions. The stochastic analysis of the networks was implemented by carrying out a large number of simulation scenarios, which led towards the determination of the maximum amount of PV generation in each network case.
The upcoming network investment decisions and regulatory framework adopted by distribution system operators (DSOs) are most likely to be impacted by the integration of fluctuating distributed generation. The economical hosting capacity (HC) improvement method is investigated in this paper as a trade‐off between curtailment and upgrade using a Monte Carlo simulation procedure. The associated costs of both methods are vital indicators for network operators that are trying to maximize the HC and minimize cost. In addition, the breakeven point where curtailment and upgrade costs intersect is the decisive point at which network upgrade becomes sensible as marginal curtailment cost exceeds upgrade cost. A shift in global climate conditions can impact the photovoltaic (PV) levels that motivate network operators to investigate PV penetration, especially in colder climate regions. Thus, the primary objective of this paper is to investigate the shift of the breakeven point to guide DSOs to either adopt PV curtailment as a temporary measure or grid upgrade as a risk aversion strategy considering Finnish climate and load patterns. The real‐time load and PV generation data are utilized for the simulations to consider the dynamic performance indication of three Finnish distribution networks. Curtailment remains a low‐cost option to obtain a percentage HC rise of 13%, 7%, and 8% for rural, suburban, and urban regions, respectively, beyond which curtailment compensation cost surpasses upgrade cost. In essence, PV curtailment serves as an immediate and least‐cost solution to relieve network violations and defer network investment until the HC level (118%, 106%, 97%) making the upgrade a practical option afterwards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.