We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D.We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.
We introduce the discrete dipole approximation (DDA) for efficiently calculating the two-dimensional electric field distribution for our microwave tomographic breast imaging system. For iterative inverse problems such as microwave tomography, the forward field computation is the time limiting step. In this paper, the two-dimensional algorithm is derived and formulated such that the iterative conjugate orthogonal conjugate gradient (COCG) method can be used for efficiently solving the forward problem. We have also optimized the matrix-vector multiplication step by formulating the problem such that the nondiagonal portion of the matrix used to compute the dipole moments is block-Toeplitz. The computation costs for multiplying the block matrices times a vector can be dramatically accelerated by expanding each Toeplitz matrix to a circulant matrix for which the convolution theorem is applied for fast computation utilizing the fast Fourier transform (FFT). The results demonstrate that this formulation is accurate and efficient. In this work, the computation times for the direct solvers, the iterative solver (COCG), and the iterative solver using the fast Fourier transform (COCG-FFT) are compared with the best performance achieved using the iterative solver (COCG-FFT) in C++. Utilizing this formulation provides a computationally efficient building block for developing a low cost and fast breast imaging system to serve under-resourced populations.
The two-dimensional electric field distribution of the microwave imaging system is numerically simulated for a simplified breast tumour model. The proposed two-dimensional discrete dipole approximation (DDA) has the potential to improve computational speed compared to other numerical methods while retaining comparable accuracy. We have modeled the field distributions in COMSOL Multiphysics as baseline results to benchmark the DDA simulations. We have also investigated the adequate sampling size and the effect of inclusion size and property contrast on solution accuracy. In this way, we can utilize the 2D DDA as an alternative, fast and reliable forward solver for microwave tomography. From a mathematical perspective, the derivation of the 2D DDA and its application to microwave imaging is new and not previously implemented. The simulation results and the measurements show that the 2D DDA is a well-grounded forward solver for the specified microwave breast imaging system.
This paper focuses on the construction of the Jacobian matrix required in tomographic reconstruction algorithms. In microwave tomography, computing the forward solutions during the iterative reconstruction process impacts the accuracy and computational efficiency. Towards this end, we have applied the discrete dipole approximation for the forward solutions with significant time savings. However, while we have discovered that the imaging problem configuration can dramatically impact the computation time required for the forward solver, it can be equally beneficial in constructing the Jacobian matrix calculated in iterative image reconstruction algorithms. Key to this implementation, we propose to use the same simulation grid for both the forward and imaging domain discretizations for the discrete dipole approximation solutions and report in detail the theoretical aspects for this localization. In this way, the computational cost of the nodal adjoint method decreases by several orders of magnitude. Our investigations show that this expansion is a significant enhancement compared to previous implementations and results in a rapid calculation of the Jacobian matrix with a high level of accuracy. The discrete dipole approximation and the newly efficient Jacobian matrices are effectively implemented to produce quantitative images of the simplified breast phantom from the microwave imaging system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.