Wireless sensor networks aim to develop a smart city based on sensing environment. The routing protocols of wireless sensor networks is important to transfer the data in smart cities since sensor nodes have limited power and transmission range. The aim of this research is to enhance wireless sensor networks routing protocols based on proposed cross-layer interaction between physical layer and network layer also a proposed routing table information of wireless sensor nodes is developed to consider the transmission power of neighbor’s nodes to determine the next hop. Cross-layer interaction provides a useful information and effective adaptation for WSN routing protocols. As a result, the proposed routing protocol shows an improvement in network performance when number of intermediate nodes are minimized.
In this paper a new model has demonstrated that it operates in a moderate performance scale to generate hot water. In its early stage, the preliminary model, which built with double pass water tube inside evacuated tube, was investigated experimentally. The model was tested inside room under different operation conditions in terms of solar radiation 300, 400, 500 and 600 W/m2 and water mass flow rates 0.00305 and 0.0083kg/s. In the first case, there was a problem because of the air gap inside the tube and surrounding the double pass water tube, so In the second stage, two different filling medium inside the evacuated tube was proposed to modify the preliminary model. The mediums cases include porous media (stainless steel wire mesh and Aluminum fiber metallic). The results show that maximum efficiency without porous media was 62.4% at 0.0083 kg/s and heat flux 600 W/m2, but after porous media applied, the efficiency reached 79.4% at 99.997% porosity of Aluminum fiber metallic and heat flux 600 W/m2 with same water mass flow.
In this paper, a new design, fabricate and investigate the performance of the parabolic trough systems (PTC) by using double pass water passage in evacuated tube technology. This system can be used for heating water in winter season without assistive devices. The double-pass method utilizing to improve thermal performance for PTC by increasing the path of water flow in the evacuated tube and then increase the rate of the outlet temperature. Besides, the evacuated tube was used to decrease the thermal losses, which is caused an increase in thermal efficiency. The experiments were test and simulate the different solar radiation approximate to winter season and at many flow rates 0.00305, 0.0055 and 0.0083 kg/s. The higher temperature difference was 46 ° C at minimum mass flow rate 0.00305 kg/s. The maximum thermal efficiency was 69.7 % at 0.0083 kg/s.
Smart cities need a smart applications for the citizen, not just digital devices. Smart applications will provide a decision-making to users by using artificial intelligence. Many real-world services for online shopping and delivery systems were used and attracted customers, especially after the Covid-19 pandemics when people prefer to keep social distance and minimize social places visiting. These services need to discover the shortest path for the delivery driver to visit multiple destinations and serve the customers. The aim of this research is to develop the route discovery for multiple-destination by using ACO Algorithm for Multiple destination route planning. ACO Algorithm for Multiple destination route planning develops the Google MAP application to optimize the route when it is used for multiple destinations and when the route is updated with a new destination. The results show improvement in the multiple destination route discovery when the shortest path and the sequence order of cities are found. In conclusion, the ACO Algorithm for Multiple destination route planning simulation results could be used with the Google Map application and provide an artificial decision for the citizen of Erbil city. Finally, we discuss our vision for future development.
The present work investigated the thermal performance of thermosyphon by using distilled water as a working fluid at different filling ratios (50%, 60%, and 70 %). The thermosyphon was manufactured from a copper tube with outer and inner diameters (26 and 24) mm, respectively. The thermosyphon was tested experimentally at different input power (100, 200 and 300) Watt. The operating temperature of the oil was chosen below 85°C. Experimental results revealed that the filling ratio of 60% exhibited the best heat dissipation at the highest operating temperature. While the low operating temperature and 50 % filling ratio show better heat dissipation. Further, it was found that the thermal resistance of the thermosyphon was obviously decreased with increasing the input power. The percentage decrease in the thermal resistance of the thermosyphon at a filling ratio of 0.6 was 14.6 % compared with that filling ratio of 0.5 at an input power of 300 W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.