The current paper offers the solution strategy for the economic dispatch problem in electric power system implementing ant lion optimization algorithm (ALOA) and bat algorithm (BA) techniques. In the power network, the economic dispatch (ED) is a short-term calculation of the optimum performance of several electricity generations or a plan of outputs of all usable power generation units from the energy produced to fulfill the necessary demand, although equivalent and unequal specifications need to be achieved at minimal fuel and carbon pollution costs. In this paper, two recent meta-heuristic approaches are introduced, the BA and ALOA. A rigorous stochastically developmental computing strategy focused on the action and intellect of ant lions is an ALOA. The ALOA imitates ant lions' hunting process. The introduction of a numerical description of its biological actions for the solution of ED in the power framework. These algorithms are applied to two systems: a small scale three generator system and a large scale six generator. Results show were compared on the metrics of convergence rate, cost, and average run time that the ALOA and BA are suitable for economic dispatch studies which is clear in the comparison set with other algorithms. Both of these algorithms are tested on IEEE-30 bus reliability test system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.