The aim of the Forum for Information Retrieval Evaluation (FIRE) is to create an evaluation framework in the spirit of TREC (Text REtrieval Conference), CLEF (Cross-Language Evaluation Forum), and NTCIR (NII Test Collection for IR Systems), for Indian language Information Retrieval. The first evaluation exercise conducted by FIRE was completed in 2008. This article describes the test collections used at FIRE 2008, summarizes the approaches adopted by various participants, discusses the limitations of the datasets, and outlines the tasks planned for the next iteration of FIRE.
The aim of the Forum for Information Retrieval Evaluation (FIRE) is to create a Cranfield-like evaluation framework in the spirit of TREC, CLEF and NTCIR, for Indian Language Information Retrieval. For the first year, six Indian languages have been selected: Bengali, Hindi, Marathi, Punjabi, Tamil, and Telugu. This poster describes the tasks as well as the document and topic collections that are to be used at the FIRE workshop.
<p>This article focuses on the importance of the continuous collection of water parameters data from the sensors and also the prediction of water quality using the latest different Machine learning algorithms like Logistic Regression, Random Forest, Support Vector Machine, Decision Tree, K-nearest Neighbour, XGBoost, Gradient Boosting and Naive Bayes. These Machine learning models are implemented and tested to validate and achieve a satisfactory result of water quality prediction in terms of different attributes like pH, hardness, Solids, Chloramines, Sulfate, Conductivity, organic carbon, trihalomethanes, Turbidity and potability.</p>
<p>This article focuses on the importance of the continuous collection of water parameters data from the sensors and also the prediction of water quality using the latest different Machine learning algorithms like Logistic Regression, Random Forest, Support Vector Machine, Decision Tree, K-nearest Neighbour, XGBoost, Gradient Boosting and Naive Bayes. These Machine learning models are implemented and tested to validate and achieve a satisfactory result of water quality prediction in terms of different attributes like pH, hardness, Solids, Chloramines, Sulfate, Conductivity, organic carbon, trihalomethanes, Turbidity and potability.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.