One of the major challenges in fracturing low permeability gas formations is the loss of well productivity due to fluid entrapment in the matrix or fracture. Field results have indicated that only 15-30% of the frac fluid is recovered at the surface after flow back. Past studies have suggested that this water is trapped in the rock matrix near the fracture face and remains trapped due to the high capillary pressure in the matrix. Significant efforts have been made in the past to understand the impact of liquid blocking in hydraulically fractured conventional gas wells. This study shows that when considering hydraulic fractures in horizontal wells, the fluid may also be trapped within the fracture itself and may impact the cleanup as well as productivity. Under typical gas flow rates in tight / shale gas formations,liquid loading of both the fractures and the matrix is very likely to occur. This paper presents the results of 3D simulations of liquid loading in hydraulic fractures in horizontal wells, including gravity and capillary pressure effects. The impact of drawdown, fracture and reservoir properties on liquid loading and well productivity is presented. Results show that low drawdown, low matrix permeability or low initial gas rates aggravate the liquid loading problem inside the fracture and thereby impact the gas productivity during initial production.
a b s t r a c tCrizotinib was the first clinically available inhibitor of the tyrosine kinase ALK, and next-generation ALK inhibitors, such as alectinib, are now under development. Although crizotinib is generally well tolerated, severe esophageal injury has been reported as a rare but serious adverse event of crizotinib therapy. We now describe the successful treatment with alectinib of a patient who developed crizotinib-induced esophageal ulceration.
Understanding the properties of formation fluid is a critical step in reservoir characterization. The use of Logging While Drilling (LWD) based fluid sampling becomes increasingly important in high risk scenarios. The LWD environment is significantly different from that of Wireline (WL) for sampling operations as the dynamic filtrate invasion is still in effect. LWD sampling is a relatively new technology and its sampling efficiency compared to WL sampling is not well known. This study aims to understand the effects of dynamic invasion processes on LWD fluid sampling and compare its performance with WL based fluid sampling. The results of the simulation study performed revealed that when the wait time after the drilling is optimized, LWD can provide cleaner samples in shorter cleanup time than WL sampling. It also revealed that the reservoir fluid breakthrough time would be shorter in LWD sampling compared to that of WL. This study indicates that with proper modeling, an optimized sampling program can be executed to meet the objectives of the LWD sampling operations in the most economic manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.