Since allozymes were first used to assess genetic diversity in the 1960s and 1970s, biologists have attempted to characterize gene pools and conserve the diversity observed in domestic crops, livestock, zoos and (more recently) natural populations. Recently, some authors have claimed that the importance of genetic diversity in conservation biology has been greatly overstated. Here, we argue that a voluminous literature indicates otherwise. We address four main points made by detractors of genetic diversity's role in conservation by using published literature to firmly establish that genetic diversity is intimately tied to evolutionary fitness, and that the associated demographic consequences are of paramount importance to many conservation efforts. We think that responsible management in the Anthropocene should, whenever possible, include the conservation of ecosystems, communities, populations and individuals, and their underlying genetic diversity.
Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are interested in how the variation captured in protein‐coding genes fluctuates relative to overall genomic diversity and whether smaller populations suffer greater costs due to their genetic load of deleterious mutations compared with larger populations. We analyzed individual whole‐genome sequences (N = 74) from three different populations of Montezuma quail (Cyrtonyx montezumae), a small ground‐dwelling bird that is sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our historical demographic results indicate that Montezuma quail populations in the United States exhibit low levels of genomic diversity due in large part to long‐term declines in effective population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more inbred than the large Arizona and the intermediate‐sized New Mexico populations we surveyed. The Texas gene pool has a significantly smaller proportion of strongly deleterious variants segregating in the population compared with the larger Arizona gene pool. Our results demonstrate that even in small populations, highly deleterious mutations are effectively purged and/or lost due to drift. However, we find that in small populations the realized genetic load is elevated because of inbreeding coupled with a higher frequency of slightly deleterious mutations that are manifested in homozygotes. Overall, our study illustrates how population genomics can be used to proactively assess both neutral and functional aspects of contemporary genetic diversity in a conservation framework while simultaneously considering deeper demographic histories.
Background
In the arms race between hosts and parasites, genes involved in the immune response are targets for natural selection. Toll-Like Receptor (TLR) genes play a role in parasite detection as part of the innate immune system whereas Major Histocompatibility Complex (MHC) genes encode proteins that display antigens as part of the vertebrate adaptive immune system. Thus, both gene families are under selection pressure from pathogens. The bananaquit (
Coereba flaveola
) is a passerine bird that is a common host of avian malarial parasites (
Plasmodium
sp. and
Haemoproteus
sp.). We assessed molecular variation of TLR and MHC genes in a wild population of bananaquits and identified allelic associations with resistance/susceptibility to parasitic infection to address hypotheses of avian immune response to haemosporidian parasites.
Results
We found that allele frequencies are associated with infection status at the immune loci studied. A consistent general trend showed the infected groups possessed more alleles at lower frequencies, and exhibited unique alleles, compared to the uninfected group.
Conclusions
Our results support the theory of natural selection favoring particular alleles for resistance while maintaining overall genetic diversity in the population, a mechanism which has been demonstrated in some systems in MHC previously but understudied in TLRs.
Electronic supplementary material
The online version of this article (10.1186/s12862-019-1435-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.