ARF-like 2 (ARL2) is a member of the ARF family and RAS superfamily of regulatory GTPases, predicted to be present in the last eukaryotic common ancestor, and essential in a number of model genetic systems. Though best studied as a regulator of tubulin folding, we previously demonstrated that ARL2 partially localizes to mitochondria. Here, we show that ARL2 is essential to a number of mitochondrial functions, including mitochondrial morphology, motility, and maintenance of ATP levels. We compare phenotypes resulting from ARL2 depletion and expression of dominant negative mutants and use these to demonstrate that the mitochondrial roles of ARL2 are distinct from its roles in tubulin folding. Testing of current models for ARL2 actions at mitochondria failed to support them. Rather, we found that knockdown of the ARL2 GTPase activating protein (GAP) ELMOD2 phenocopies two of three phenotypes of ARL2 siRNA, making it a likely effector for these actions. These results add new layers of complexity to ARL2 signaling, highlighting the need to deconvolve these different cell functions. We hypothesize that ARL2 plays essential roles inside mitochondria along with other cellular functions, at least in part to provide coupling of regulation between these essential cell processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.