Multilevel inverter has played a vital role in medium and high power applications in the recent years. In this paper, Reduced Switch Count Multi Level Inverter structure (RSCMLI) topology is presented with different pulse width modulation techniques. The harmonic level analysis is carried out for the reduced switch count multilevel inverter with the different PWM technique such as with Alternate Phase Opposition Disposition (APOD) method, In Phase Disposition (IPD) method and multi reference pulse width modulation method for five level, seven level , nine level and eleven level inverter. The simulation results are compared with the cascaded H Bridge Multi Level Inverter (CHBMLI). The nine level RSCMLI inverter with APOD method is used for the Distribution Static Synchronous Compensator (DSTATCOM) application in the nonlinear load connected system for power factor improvement. The result shows that the harmonic level and the number of switches required for RSCMLI is reduced compared to CHBMLI. RSCMLI employed in DSTATCOM improves the power factor and harmonic level of the system when it is connected to the nonlinear load.
This paper presents a new ideology called as boost inverter which converts input DC supply into AC directly without using any filter circuit. The main part of today’s research work is to use solar energy efficiently. While using for AC autonomous loads, the output from the solar panel should not suffer any losses during the various power conversion stages. The conventional voltage source inverter, which is currently in usage, produces an AC output voltage lower than the DC input supply and thus it requires another power conversion stage. It can be used to drive the loads only after removing the ripples using a filter. The main objective of the project is to produce an AC output voltage higher than the DC input voltage in a single stage. Thus the number of power conversion stages is reduced by using boost inverter circuit. Since Pulse Width Modulation technique is used to drive the circuit, the requirement of a filter at the output is not needed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.