Distribution of antimony and its inorganic species in soil samples along two traffic routes (A14, Rankweil and S36, Knittelfeld) in Austria was determined, since vehicle emissions are an important anthropogenic source of Sb in soil. The samples were taken along three parallel lines at about 0.2, 2 and 10 m distances from the edge of the road and in two depths range (0-5 and 5-10 cm from the soil surface). The optimized extraction was carried out using 100 mmol L(-1) citric acid at pH 2.08 applying an ultrasonic bath for 45 min at room temperature. Speciation analyses were done using on-line isotope dilution after a chromatographic separation of Sb species. Results of the two traffic routes confirmed significant accumulations of Sb at surface (0-5 cm depth) exceeding the natural background values by more than ten times at the S36 or four times at the A14. Concentrations of the extractable inorganic species decreased to natural background levels within a few meters from the edge of the traffic lane. The predominant Sb species was Sb(V). The Sb(III) concentrations at 5-10 cm depths range are nearly constant with distance from the edges of the two roads. Magnetic susceptibility data of all soil samples show the same distribution pattern as Sb and Sb(V) concentrations along the two traffic roads with an excellent correlation. This is an evidence for an anthropogenic source of Sb such as abrasions of motor vehicles surfaces or braking linings. The input of Sb and its inorganic species at one of the sampling sites (Knittelfeld) in samples taken in 2002 and in those taken recently (2005) was monitored. An increase in Sb (>or=30%), Sb(v)(>or=51%) and Sb(iii)(>or=10%) concentrations was only observed near the edge (
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 microg g(-1), 0.3 microg g(-1) SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L(-1) citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0-500 mmol L(-1)), pH (1-6), and temperature (30-60 degrees C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L(-1) EDTA and 1 mmol L(-1) phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) (123)Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min(-1)) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L(-1) and 65 ng L(-1) for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L(-1) calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.
A sensitive spectrophotometric determination of fluoride in drinking water has been developed using aluminium complexes of triphenylmethane dyes (chrome azurol B and malachite green) as spectrophotometric reagents. The method allowed a reliable determination of fluoride in the range of 0.5-4.0 mg•ℓ -1 for chrome azurol B and 0.0-2.0 mg•ℓ -1 for malachite green. The molar absorptivity for the complexes of chrome azurol B at 582 nm and malachite green at 622 nm is 1.44 × 10 4 and 2.56 × 10 4 ℓ•mol -1 •cm -1 , respectively. The sensitivity, detection limit, quantitation limit, and percentage recovery for 1.5 mg•ℓ -1 fluoride for the method using chrome azurol B were found to be 0.125 ± 0.003 μg•mℓ -1 , 0.2 mg•ℓ -1 , 0.5 mg•ℓ -1 , and 97.1 ± 4.2, respectively, and for malachite green were 0.143 ± 0.002 μg•mℓ -1 , 0.1 mg•ℓ -1 , 0.3 mg•ℓ -1 , and 97.9 ± 4.1, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.