Stringent de-identification methods can remove all identifiers from text radiology reports. DICOM de-identification of images does not remove all identifying information and needs special attention to images scanned from film. Adding manual coding to the radiologist narrative reports significantly improved relevancy of the retrieved clinical documents. The de-identified Indiana chest X-ray collection is available for searching and downloading from the National Library of Medicine (http://openi.nlm.nih.gov/).
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
The National Library of Medicine (NLM) is developing a digital chest X-ray (CXR) screening system for deployment in resource constrained communities and developing countries worldwide with a focus on early detection of tuberculosis. A critical component in the computer-aided diagnosis of digital CXRs is the automatic detection of the lung regions. In this paper, we present a nonrigid registration-driven robust lung segmentation method using image retrieval-based patient specific adaptive lung models that detects lung boundaries, surpassing state-of-the-art performance. The method consists of three main stages: 1) a content-based image retrieval approach for identifying training images (with masks) most similar to the patient CXR using a partial Radon transform and Bhattacharyya shape similarity measure, 2) creating the initial patient-specific anatomical model of lung shape using SIFT-flow for deformable registration of training masks to the patient CXR, and 3) extracting refined lung boundaries using a graph cuts optimization approach with a customized energy function. Our average accuracy of 95.4% on the public JSRT database is the highest among published results. A similar degree of accuracy of 94.1% and 91.7% on two new CXR datasets from Montgomery County, MD, USA, and India, respectively, demonstrates the robustness of our lung segmentation approach.
Background Human papillomavirus vaccination and cervical screening are lacking in most lower resource settings, where approximately 80% of more than 500 000 cancer cases occur annually. Visual inspection of the cervix following acetic acid application is practical but not reproducible or accurate. The objective of this study was to develop a “deep learning”-based visual evaluation algorithm that automatically recognizes cervical precancer/cancer. Methods A population-based longitudinal cohort of 9406 women ages 18–94 years in Guanacaste, Costa Rica was followed for 7 years (1993–2000), incorporating multiple cervical screening methods and histopathologic confirmation of precancers. Tumor registry linkage identified cancers up to 18 years. Archived, digitized cervical images from screening, taken with a fixed-focus camera (“cervicography”), were used for training/validation of the deep learning-based algorithm. The resultant image prediction score (0–1) could be categorized to balance sensitivity and specificity for detection of precancer/cancer. All statistical tests were two-sided. Results Automated visual evaluation of enrollment cervigrams identified cumulative precancer/cancer cases with greater accuracy (area under the curve [AUC] = 0.91, 95% confidence interval [CI] = 0.89 to 0.93) than original cervigram interpretation (AUC = 0.69, 95% CI = 0.63 to 0.74; P < .001) or conventional cytology (AUC = 0.71, 95% CI = 0.65 to 0.77; P < .001). A single visual screening round restricted to women at the prime screening ages of 25–49 years could identify 127 (55.7%) of 228 precancers (cervical intraepithelial neoplasia 2/cervical intraepithelial neoplasia 3/adenocarcinoma in situ [AIS]) diagnosed cumulatively in the entire adult population (ages 18–94 years) while referring 11.0% for management. Conclusions The results support consideration of automated visual evaluation of cervical images from contemporary digital cameras. If achieved, this might permit dissemination of effective point-of-care cervical screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.