Idiopathic pulmonary fibrosis is a generally progressive disorder with highly heterogeneous disease progression. The most common of the idiopathic interstitial pneumonias, idiopathic pulmonary fibrosis is characterized by a steady worsening of lung function and gas exchange cause by diffuse alveolar damage and severe fibrosis. We examined clinical features of patients with idiopathic pulmonary fibrosis to classify them as exhibiting rapid or slowly progressive over the first year of follow-up. We identified differences between the two groups in order to investigate the mechanism of rapid progression. Previous work from our laboratory has demonstrated that Toll-like receptor 9, a pathogen recognition receptor, promotes myofibroblast differentiation in lung fibroblasts cultured from biopsies of patients with idiopathic pulmonary fibrosis. Therefore, we hypothesized that TLR9 functions as both a sensor of pathogenic molecules and a profibrotic signal in rapidly progressive idiopathic pulmonary fibrosis. TLR9 was present at higher concentrations in surgical lung biopsies from rapidly progressive patients than in tissue from normal controls. Fibroblasts from rapid progressors were more responsive to the TLR9 agonist, CpG, than were fibroblasts from control patients. We used a humanized SCID mouse and demonstrated that there was increased fibrosis in murine lungs receiving human lung fibroblasts from rapid progressors than in mice receiving normal fibroblasts. This fibrosis was exacerbated by intranasal CpG challenges. Furthermore, CpG induced the differentiation of blood monocytes into fibrocytes and the epithelial-to-mesenchymal transition of A549 lung epithelial cells. These data suggest that TLR9 may drive the pathogenesis of rapidly progressive idiopathic pulmonary fibrosis and is a potential indicator of this subset of the disease.
BackgroundIdiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF.Methodology and Principal FindingsmiRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts.ConclusionThese findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing.
BackgroundInterleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined.ResultsHuman macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone.ConclusionsTogether, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.
SR-Ag-induced IL-17 plays a pivotal role in the immunopathology of HP and targeting IL-17 is an attractive therapeutic option for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.