It is thus predicted that the variations may lead to a change in the position of the splicing enhancer/inhibitor in KCNQ1 leading to the formation of a truncated S2-S3 fragment of KCNQ1 transmembrane protein in cardiac cells as well as epithelial cells of inner ear leading to deafness and aberrant repolarization causing prolonged QTc.
The SCN5A gene encodes for the INa channel implicated in long QT syndrome type-3 (LQTS-type-3). Clinical symptoms of this type are lethal as most patients had a sudden death during sleep. Screening of SCN5A in South Indian cohort by PCR-SSCP analyses revealed five polymorphisms — A29A (exon-2), H558R (exon-12), E1061E and S1074R (exon-17) and IVS25 + 65G > A (exon-25) respectively. In-silico and statistical analyses were performed on all the polymorphisms.Exon-2 of SCN5A gene revealed A282G polymorphism (rs6599230), resulting in alanine for alanine (A29A) silent substitution in the N-terminus of SCN5A protein. Exon-12 showed A1868G polymorphism (H558R — rs1805124) and its ‘AA’ genotype and ‘A’ allele frequency were found to be higher in LQTS patients pointing towards its role in LQTS etiology.Two polymorphisms A3378G (E1061E) and the novel C3417A (S1074R) were identified as compound heterozygotes/genetic compounds in exon-17 of SCN5A located in the DIIS6–DIIIS1 domain of the SCN5A transmembrane protein. IVS25 + 65G > A was identified in intron-25 of SCN5A. The ‘G’ allele was identified as the risk allele.Variations were identified in in-silico analyses which revealed that these genetic compounds may lead to downstream signaling variations causing aberrations in sodium channel functions leading to prolonged QTc. The compound heterozygotes of SCN5A gene polymorphisms revealed a significant association which may be deleterious/lethal leading to an aberrant sodium ion channel causing prolonged QTc.
Lymphatic filariasis is the leading cause of secondary lymphedema wherein lymph transport is impaired due to lymphatic damage. FLT4 signaling and transcription factors such as FOXC2 play an important role in this type of lymphangiogenesis process induced by filarial parasites. The present study aims to assess the association of FLT4 and FOXC2 genes in lymphatic development/remodeling in lymphatic filariasis. A total of 118 lymphatic filariasis patients and 100 non-endemic and 50 endemic healthy subjects were enrolled for the present study. Allele-specific PCR and PCR-RFLP were adopted for the genotyping, and screening of FLT4 and FOXC2 genes was carried out by PCR-SSCP, followed by in-silico and statistical analysis. A novel variation (G357A SNP) was identified on FOXC2 gene screening that may have an effect on codon usage frequency during translational process. In FLT4, A3123G mutation was found in 3.39% of the case subjects but the functional role of this mutation, along with subject's clinical presentations and patient's age, emphasize its pathogenic role in lymphedema development. Two of the subjects exhibit compound heterozygosity (A3123G FLT4 mutation and G357A SNP of FOXC2 gene). As these two genes share a common pathway, we hypothesise a synergistic interaction of these two SNPs in inhibiting the downstream signaling resulting in lymphedema progression.
As HSP-70 influences the channel assembly and maturation/trafficking of the ion channel proteins, the alleles C of the HSP-70-1 and G of the HSP-70-2 loci and the haplotype group C-G-T could be considered a diagnostic biomarker in the identification of the LQTS phenotype with a potential to affect the progression and modification of the disease phenotype.
Heterogeneity in clinical manifestations is a well-known feature in Long QT Syndrome (LQTS). The extent of this phenomenon became evident in families wherein both symptomatic and asymptomatic family members are reported. The study hence warrants genetic testing and/or screening of family members of LQTS probands for risk stratification and prediction.Of the 46 families screened, 18 probands revealed novel variations/compound heterozygosity in the gene/s screened. Families 1–4 revealed probands carrying novel variations in KCNQ1 gene along with compound heterozygosity of risk genotypes of the SCN5A, KCNE1 and NPPA gene/s polymorphisms screened. It was also observed that families- 5, 6 and 7 were typical cases of “anticipation” in which both mother and child were diagnosed with congenital LQTS (cLQTS). Families- 16 and 17 represented aLQTS probands with variations in IKs and INa encoding genes. First degree relatives (FDRs) carrying the same haplotype as the proband were also identified which may help in predictive testing and management of LQTS. Most of the probands exhibiting a family history were found to be genetic compounds which clearly points to the role of cardiac genes and their modifiers in a recessive fashion in LQTS manifestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.