Social Networks has become one of the most popular platforms to allow users to communicate, and share their interests without being at the same geographical location. With the great and rapid growth of Social Media sites such as Facebook, LinkedIn, Twitter…etc. causes huge amount of user-generated content. Thus, the improvement in the information quality and integrity becomes a great challenge to all social media sites, which allows users to get the desired content or be linked to the best link relation using improved search / link technique. So introducing semantics to social networks will widen up the representation of the social networks.In this paper, a new model of social networks based on semantic tag ranking is introduced. This model is based on the concept of multi-agent systems. In this proposed model the representation of social links will be extended by the semantic relationships found in the vocabularies which are known as (tags) in most of social networks.The proposed model for the social media engine is based on enhanced Latent Dirichlet Allocation(E-LDA) as a semantic indexing algorithm, combined with Tag Rank as social network ranking algorithm. The improvements on (E-LDA) phase is done by optimizing (LDA) algorithm using the optimal parameters. Then a filter is introduced to enhance the final indexing output. In ranking phase, using Tag Rank based on the indexing phase has improved the output of the ranking. Simulation results of the proposed model have shown improvements in indexing and ranking output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.