Low-cost biosourced hybrid microporous adsorbents with improved affinity towards carbon dioxyde (CO2) were prepared through the incorporation of various amounts of glucosylated dendrimer into bentonite- and montmorillonite-rich composite materials. Characterization by nitrogen adsorption–desorption isotherms, surface specific and pore size analyses (BET and BJH), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed changes in the interlayer spacing and textural structure of the materials. Thermal programmed desorption measurements (TPD) showed significant improvements of the retention capacity of CO2 (CRC) and water (WRC). This was explained in terms of enhancement of both surface basicity and hydrophilic character due to the incorporation of terminal polyhydroxyl groups. The CRC was found to vary according to the previous saturation time with CO2 and the carrier gas throughput. CO2 was totally released upon temperature not exceeding 80 °C or even at room temperature upon strong carrier gas stream, thus providing evidence that CO2 capture involves almost exclusively physical interaction with the OH groups of the dendrimer. This result opens promising prospects for the reversible capture of carbon dioxide with easy release without thermal regeneration, more particularly when extending this concept to biosourced dendrimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.