Our work is based on the multiple inequalities illustrated in 2020 by Hamiaz and Abuelela. With the help of a Fenchel-Legendre transform, which is used in various problems involving symmetry, we generalize a number of those inequalities to a general time scale. Besides that, in order to get new results as special cases, we will extend our results to continuous and discrete calculus.
The main aim of the present article is to introduce some new ∇-conformable dynamic inequalities of Hardy type on time scales. We present and prove several results using chain rule and Fubini’s theorem on time scales. Our results generalize, complement, and extend existing results in the literature. Many special cases of the proposed results, such as new conformable fractional h-sum inequalities, new conformable fractional q-sum inequalities, and new classical conformable fractional integral inequalities, are obtained and analyzed.
The primary goal of this research is to prove some new Hardy-type ∇-conformable dynamic inequalities by employing product rule, integration by parts, chain rule and (γ,a)-nabla Hölder inequality on time scales. The inequalities proved here extend and generalize existing results in the literature. Further, in the case when γ=1, we obtain some well-known time scale inequalities due to Hardy inequalities. Many special cases of the proposed results are obtained and analyzed such as new conformable fractional h-sum inequalities, new conformable fractional q-sum inequalities and new classical conformable fractional integral inequalities.
In this paper, we establish some dynamic Hilbert-type inequalities in two independent variables on time scales by using the Fenchel–Legendre transform. We also apply our inequalities to discrete and continuous calculus to obtain some new inequalities as particular cases. Our results give more general forms of several previously established inequalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.