In this paper, cognitive transmission under quality of service (QoS) constraints is studied. In the cognitive radio channel model, it is assumed that the secondary transmitter sends the data at two different average power levels, depending on the activity of the primary users, which is determined by channel sensing performed by the secondary users. A state-transition model is constructed for this cognitive transmission channel. Statistical limitations on the buffer lengths are imposed to take into account the QoS constraints. The maximum throughput under these statistical QoS constraints is identified by finding the effective capacity of the cognitive radio channel. This analysis is conducted for fixed-power/fixed-rate, fixed-power/variable-rate, and variable-power/variable-rate transmission schemes under different assumptions on the availability of channel side information (CSI) at the transmitter. The impact upon the effective capacity of several system parameters, including channel sensing duration, detection threshold, detection and false alarm probabilities, QoS parameters, and transmission rates, is investigated. The performances of fixed-rate and variable-rate transmission methods are compared in the presence of QoS limitations. It is shown that variable schemes outperform fixed-rate transmission techniques if the detection probabilities are high. Performance gains through adapting the power and rate are quantified and it is shown that these gains diminish as the QoS limitations become more stringent.
The co-deployment of radio frequency (RF) and visible light communications (VLC) technologies has been investigated in indoor environments to enhance network performances and to address specific quality-of-service (QoS) constraints. In this paper, we explore the benefits of employing both technologies when the QoS requirements are imposed as limits on the buffer overflow and delay violation probabilities, which are important metrics in designing low latency wireless networks. Particularly, we consider a multi-mechanism scenario that utilizes RF and VLC links for data transmission in an indoor environment, and then propose a link selection process through which the transmitter sends data over the link that sustains the desired QoS guarantees the most. Considering an ON-OFF data source, we employ the maximum average data arrival rate at the transmitter buffer and the non-asymptotic bounds on data buffering delay as the main performance measures. We formulate the performance measures under the assumption that both links are subject to average and peak power constraints. Furthermore, we investigate the performance levels when either one of the two links is used for data transmission, or when both are used simultaneously. Finally, we show the impacts of different physical layer parameters on the system performance through numerical analysis. Index TermsVisible light communications, quality-of-service constraints, buffering delay bound, link selection, multi-mechanisms. M. Hammouda, S. Akın, and J. Peissig are with the Institute of Communications Technology, Leibniz Universität Hannover, 30167 Hanover, Germany. E-mails: {marwan.hammouda, sami.akin, and peissig}@ikt.uni-hannover.de. A. M. Vegni is with COMLAB laboratory, Such networks are practically feasible as RF and VLC systems can coexist without causing interference on each other and operate in the same environment, such as offices and rooms. Comparing hybrid RF/VLC systems with systems that employ either RF or VLC only, the authors in [1], [3], [4], [7], [14] demonstrated a remarkable increase in data transmission throughput, energy efficiency and delay performance in hybrid RF/VLC systems. Moreover, the authors in [5], [6] projected a hybrid system in which they use VLC links for down-link communication and RF links for up-link communication. In such a system, the authors in [8]-[10] and the ones in [12], [13], [15] investigated handover and load balancing mechanisms, respectively. Alternatively, considering an outdoor environment, the authors in [16] studied a point-to-point transmission scenario in which the system can switch between RF links and VLC links after comparing the signal-to-noise ratio levels in each link. Regarding the same system setting, the authors in [17] assumed that both RF and VLC links have the same transmission rates, and then proposed a diversity-based transmission scheme such that the transmitter sends data by employing both links simultaneously.The aforementioned studies analyzed the hybrid RF/VLC systems mostly from the physical layer ...
Recently, hybrid-automatic-repeat-request (HARQ) systems have been favored in particular state-of-the-art communications systems since they provide the practicality of error detections and corrections aligned with repeat-requests when needed at receivers. The queueing characteristics of these systems have taken considerable focus since the current technology demands data transmissions with a minimum delay provisioning. In this paper, we investigate the effects of physical layer characteristics on data link layer performance in a general class of HARQ systems. Constructing a state transition model that combines queue activity at a transmitter and decoding efficiency at a receiver, we identify the probability of clearing the queue at the transmitter and the packet-loss probability at the receiver. We determine the effective capacity that yields the maximum feasible data arrival rate at the queue under quality-ofservice constraints. In addition, we put forward non-asymptotic backlog and delay bounds. Finally, regarding three different HARQ protocols, namely Type-I HARQ, HARQ-chase combining (HARQ-CC) and HARQ-incremental redundancy (HARQ-IR), we show the superiority of HARQ-IR in delay robustness over the others. However, we further observe that the performance gap between HARQ-CC and HARQ-IR is quite negligible in certain cases. The novelty of our paper is a general cross-layer analysis of these systems, considering encoding/decoding in the physical layer and delay aspects in the data-link layer.
Abstract-Recently, communications systems that are both energy efficient and reliable are under investigation. In this paper, we concentrate on an energy-detection-based transmission scheme where a communication scenario between a transmitter with one antenna and a receiver with significantly many antennas is considered. We assume that the receiver initially calculates the average energy across all antennas, and then decodes the transmitted data by exploiting the average energy level. Then, we calculate the average symbol error probability by means of a maximum a-posteriori probability detector at the receiver. Following that, we provide the optimal decision regions. Furthermore, we develop an iterative algorithm that reaches the optimal constellation diagram under a given average transmit power constraint. Through numerical analysis, we explore the system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.