This study aims to investigate the effect of the processing parameters in plasma electrolytic oxidation (PEO) on the corrosion resistance of magnesium alloy type AZ91. The PEO coatings were prepared on the samples using alkaline‐based electrolyte. Both unipolar and bipolar, different frequencies and duty cycles were applied. Corrosion tests, using potentiodynamic polarization, linear and cyclic, and electrochemical impedance spectroscopy techniques, were applied on the as‐received and PEO coated samples. Scanning electron microscopy was used to investigate the surface morphology, for example, micropores, as well as to measure the thickness of the coated layer by changing the processing parameters. The results show that the size of micropores is interrelated to the duty cycle percentage and current polarities, as the higher frequency causes thinner coating layers, with fewer micropores, consequently higher corrosion resistance. In addition, increasing the duty cycle, a denser and more compact coating was obtained. The XRD results showed a missing peak of the α‐Mg phase in a PEO coated sample using bipolar, the highest frequency (1666 Hz), and the highest duty cycle (66.6%). The mils per year calculations showed that the PEO coated has a lower corrosion rate by at least 8 times than the as‐received alloy.
This study aims to investigate the effect of the processing parameters in plasma electrolytic oxidation (PEO) on the corrosion resistance of magnesium alloy type AZ91. The PEO coatings were prepared on the samples using alkaline-based electrolyte. Both unipolar and bipolar, different frequencies and duty cycles were applied. Corrosion tests, using potentiodynamic polarisation (PDP), linear and cyclic, and electrochemical impedance spectroscopy (EIS) techniques, were applied on the as-received and PEO coated samples. Scanning electron microscopy was used to investigate the surface morphology, e.g. micropores, as well as to measure the thickness of the coated layer with changing the processing parameters. The results show that the size of micropores is interrelated to the duty cycle percentage and current polarities, as the higher frequency causes thinner coating layers, with fewer micropores, consequently higher corrosion resistance. In addition, increasing the duty cycle, a denser and more compact coating was obtained. The XRD results showed missing peak of the α-Mg phase in a PEO coated sample using Bipolar, the highest frequency (1666 Hz) and the highest duty cycle (66.6%). The mils per year calculations showed that the PEO coated have lower corrosion rate by at least 8 times than the as-received alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.