Recently, Internet of Things (IoT) devices produces massive quantity of data from distinct sources that get transmitted over public networks. Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved. The development of automated tools for cyber threat detection and classification using machine learning (ML) and artificial intelligence (AI) tools become essential to accomplish security in the IoT environment. It is needed to minimize security issues related to IoT gadgets effectively. Therefore, this article introduces a new Mayfly optimization (MFO) with regularized extreme learning machine (RELM) model, named MFO-RELM for Cybersecurity Threat Detection and classification in IoT environment. The presented MFO-RELM technique accomplishes the effectual identification of cybersecurity threats that exist in the IoT environment. For accomplishing this, the MFO-RELM model pre-processes the actual IoT data into a meaningful format. In addition, the RELM model receives the pre-processed data and carries out the classification process. In order to boost the performance of the RELM model, the MFO algorithm has been employed to it. The performance validation of the MFO-RELM model is tested using standard datasets and the results highlighted the better outcomes of the MFO-RELM model under distinct aspects.
Sentiment analysis or opinion mining (OM) concepts become familiar due to advances in networking technologies and social media. Recently, massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult. Since OM find useful in business sectors to improve the quality of the product as well as services, machine learning (ML) and deep learning (DL) models can be considered into account. Besides, the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process. Therefore, in this paper, a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory (AFSO-BLSTM) model has been developed for OM process. The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data. In addition, the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process. Besides, BLSTM model is employed for the effectual detection and classification of opinions. Finally, the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model, shows the novelty of the work. A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.