With the advent of neuromorphic hardware, spiking neural networks can be a good energy-efficient alternative to artificial neural networks. However, the use of spiking neural networks to perform computer vision tasks remains limited, mainly focusing on simple tasks such as digit recognition. It remains hard to deal with more complex tasks (e.g. segmentation, object detection) due to the small number of works on deep spiking neural networks for these tasks. The objective of this paper is to make the first step towards modern computer vision with supervised spiking neural networks. We propose a deep convolutional spiking neural network for the localization of a single object in a grayscale image. We propose a network based on DECOLLE, a spiking model that enables local surrogate gradient-based learning. The encouraging results reported on Oxford-IIIT-Pet validates the exploitation of spiking neural networks with a supervised learning approach for more elaborate vision tasks in the future.
Many research works focus on leveraging the complementary geometric information of indoor depth sensors in vision tasks performed by deep convolutional neural networks, notably semantic segmentation. These works deal with a specific vision task known as "RGB-D Indoor Semantic Segmentation". The challenges and resulting solutions of this task differ from its standard RGB counterpart. This results in a new active research topic. The objective of this paper is to introduce the field of Deep Convolutional Neural Networks for RGB-D Indoor Semantic Segmentation. This review presents the most popular public datasets, proposes a categorization of the strategies employed by recent contributions, evaluates the performance of the current state-of-the-art, and discusses the remaining challenges and promising directions for future works.
This paper presents "Bina-Rep", a simple representation method that converts asynchronous streams of events from event cameras to a sequence of sparse and expressive event frames. By representing multiple binary event images as a single frame of N -bit numbers, our method is able to obtain sparser and more expressive event frames thanks to the retained information about event orders in the original stream. Coupled with our proposed model based on a convolutional neural network, the reported results achieve state-of-the-art performance and repeatedly outperforms other common event representation methods. Our approach also shows competitive robustness against common image corruptions, compared to other representation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.