The material with anisotropic properties are becoming widely essential due to the ease to manipulate their mechanical properties in order to obtain a particular quality, insure safety or a specific behavior. Those kind of materials are considered anisotropic because their characteristics and behavior are dependent to every direction of the material’s orientation. In this work, the virtual crack closure-integral technique is implemented to a mixed finite element, in addition with the stiffness derivative procedure, to evaluate the energy release rate of crack extension in anisotropic materials. A simulation of a cracked edge rectangular plat with anisotropic characteristics is taken for example. The results obtained are in good agreement with the analytical results, making the proposed technique a good model for fracture investigation and allow it to study more complicated cases in future works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.