In this study, the Moore–Gibson–Thompson (MGT) concept of thermal conductivity is applied to a two-dimensional elastic solid in the form of a half-space. This model was constructed using Green and Naghdi’s thermoelastic model to address the infinite velocity problem of heat waves. It has been taken into account that the free surface of the medium is immersed in an electromagnetic field of constant intensity, undergoes thermal shock, and rotates with a uniform angular velocity. The governing equations of a modified version of Ohm’s law account for the impact of temperature gradients and charge densities. By using the method of normal mode analysis, an analytical representation of the studied physical fields was obtained. The effect of rotation and the modulus of modified Ohm’s law on the responses of the field distributions examined is discussed, along with accompanying graphical representations. Other thermoelastic models have been compared with the results of the proposed system when the relaxation time is ignored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.