Design of integrated power systems requires prototype-less approaches. Accurate simulations are necessary for analysis and verification purposes. Simulation relies on component models and associated parameters. The paper focuses on a step-by-step extraction procedure for the design parameters of a one-dimensional finite-element-method (FEM) model of the PiN diode. The design parameters are also available for diverse physics-based analytical models. The PiN diode remains a complex device to model particularly during switching transients. The paper demonstrates that a simple FEM model may be considered unknowingly of the device exact technology. Heterogeneous simulation is illustrated. The state-of-art of parameter extraction methods is briefly recalled. The proposed procedure is detailed. The diode model and extracted parameters are systematically validated from electro-thermal point-of-view. Validity domains are discussed.
Commercial power diodes are optimized to feature punch-through behavior. However, a tradeoff between the width and the doping level of the diode epitaxial layer leads to various levels of optimization. For a given breakdown voltage, a shorter epitaxial layer width leads to better transient performances. Device datasheets do not cover this issue and a simple experimental setup is presented to assess the optimization conditions inside the diode epitaxial layer. Three commercial devices are tested and experimental results are confronted to device simulations. A good agreement is found.
SUMMARYAccurate modelling of PiN diode transient behaviour is necessary to extract design parameters which are not documented in datasheets. To meet this requirement, this paper introduces a novel approach giving the possibility to identify accurate parameters of a given device. The used technique is based only on two stages. First, the design parameters are initialized and optimized. Second, they are refined by minimizing the cost function which depends on the transient switching parameters (I RM , V RM and t rr ).With a simple and CPU time-saving approach this technique leads to extract design parameters without necessarily knowing the exact technological architecture of the PiN diode. Moreover, in order to validate the proposed approach and the parameter extraction procedure three commercial diodes are tested. A good agreement between experimental and simulation data is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.