Deregulation of the cell cycle machinery is a hallmark of cancer. While CDK4/6 inhibitors are FDA approved (palbociclib) for treating advanced estrogen receptor-positive breast cancer, two major clinical challenges remain: (i) adverse events leading to therapy discontinuation and (ii) lack of reliable biomarkers. Here we report that breast cancer cells activate autophagy in response to palbociclib, and that the combination of autophagy and CDK4/6 inhibitors induces irreversible growth inhibition and senescence in vitro, and diminishes growth of cell line and patient-derived xenograft tumours in vivo. Furthermore, intact G1/S transition (Rb-positive and low-molecular-weight isoform of cyclin E (cytoplasmic)-negative) is a reliable prognostic biomarker in ER positive breast cancer patients, and predictive of preclinical sensitivity to this drug combination. Inhibition of CDK4/6 and autophagy is also synergistic in other solid cancers with an intact G1/S checkpoint, providing a novel and promising biomarker-driven combination therapeutic strategy to treat breast and other solid tumours.
Background:Bone is one of the most common sites of distant metastasis in breast cancer. The purpose of this study was to combine selected clinical and pathologic variables to develop a nomogram that can predict the likelihood of bone-only metastasis (BOM) as the first site of recurrence in patients with early breast cancer.Methods:Medical records of patients with non-metastatic breast cancer were retrospectively collected. On the basis of the analysis of patient and tumour characteristics using the Cox proportional hazards regression model, a nomogram to predict BOM was constructed for a 4175-patient-training cohort. The nomogram was validated in an independent cohort of 579 patients.Results:Among 4175 patients with non-metastatic breast cancer, 314 developed subsequent BOM. Age, T classification, lymph node status, lymphovascular space invasion, and hormone receptor status were significantly and independently associated with subsequent BOM. The nomogram had a concordance index of 0.69 in the training set and 0.73 in the validation set.Conclusions:We have developed a clinical nomogram to predict subsequent BOM in patients with non-metastatic breast cancer. Selection of a patient population at high risk for BOM could facilitate research of more specific staging approaches or the selective use of bone-targeted therapy.
BackgroundPatients with breast cancer who have a pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) have improved survival. We hypothesize that once pCR has been achieved, there is no difference in subsequent postsurgical recurrence-free survival (RFS), whichever NACT regimen is used.MethodsData from patients with breast cancer who achieved pCR after NACT between 1996 and 2011 were reviewed. RFS was estimated by the Kaplan-Meier method, and differences between groups were assessed using log-rank testing. Cox proportional hazards regression analysis adjusted for age, menopausal status, stage, grade, tumor subtype, and adjuvant endocrine HER2-targeted radiation treatment.ResultsAmong 721 patients who achieved pCR after NACT, 157 (21.8%) were hormone receptor-positive (HR), 310 (43.3%) were HER2-amplified, and 236 (32.7%) were triple-negative; 292 (40.5%) were stage IIA, 153 (21.2%) were stage IIB, 78 (10.8%) were stage IIIA, 66 (9.2%) were stage IIIB, and 132 (18.3%) were stage IIIC. Most patients (367 [50.9%]) had been treated with adriamycin-based chemotherapy plus taxane (A + T), 56 (7.8%) without taxane (A no T), 227 (31.5%) with HER2-targeted therapy, and 71 (9.8%) provider choice. Median follow-up was 7.1 years. Adjuvant chemotherapy was employed in 196 (27%) patients, adjuvant endocrine in 261 (36%), and adjuvant radiation in the majority (559 [77.5%]). There was no statistically significant difference in RFS by NACT group. Adjusted RFS hazard ratios, comparing each treatment with the reference group A + T, were 1.25 (95% CI 0.47–3.35) for A no T, 0.90 (95% CI 0.37–2.20) for HER2-targeted therapy, and 1.28 (95% CI 0.55–2.98) for provider choice.ConclusionsThese data suggest that postsurgical RFS is not significantly influenced by the choice of NACT or cancer subtype among patients achieving pCR.Electronic supplementary materialThe online version of this article (10.1186/s13058-018-0945-7) contains supplementary material, which is available to authorized users.
Background: CDK 4 and 6 inhibitors (CDK4/6i), which arrest unregulated cancer cell proliferation, show clinical efficacy in breast cancer. Unexpectedly, a patient treated on a CDK4/6i-based trial, as first-line therapy in metastatic breast cancer, developed rapid disease progression following discontinuation of study drug while receiving standard second-line therapy off trial. We thus sought to expand this observation within a population of patients treated similarly at The University of Texas MD Anderson Cancer Center. Methods: Using an IRB-approved protocol, 4 patients previously enrolled on CDK4/6i trials were analyzed for outcomes after discontinuing study drug. These patients were treated on a randomized trial of first-line endocrine therapy +/-a CDK4/6i. Rapid disease progression was defined as progression occurring within 4 months of CDK4/6i discontinuation. Results: In total, 4 patients developed rapid disease progression and died; 2 of whom died within 6 months of CDK4/6i discontinuation. Conclusion: This case series suggests a potential for rapid disease progression following CDK4/6i discontinuation. However, the clinical course following progression must be validated in large CDK4/6i clinical trials and standard-of-care cohorts. If confirmed, such observations may alter the algorithm for subsequent therapy in patients with disease progression on CDK4/6i. Nevertheless, the need remains to define a mechanistic basis for this rapid progression and formulate alternative therapeutic strategies.
Sulfur is an essential nutrient that can exist at growth-limiting concentrations in freshwater environments. The freshwater cyanobacterium Fremyella diplosiphon (also known as Tolypothrix sp. PCC 7601) is capable of remodeling the composition of its light-harvesting antennae, or phycobilisomes, in response to changes in the sulfur levels in its environment. Depletion of sulfur causes these cells to cease the accumulation of two forms of a major phycobilisome protein called phycocyanin and initiate the production of a third form of phycocyanin, which possesses a minimal number of sulfur-containing amino acids. Since phycobilisomes make up approximately 50% of the total protein in these cells, this elemental sparing response has the potential to significantly influence the fitness of this species under low-sulfur conditions. This response is specific for sulfate and occurs over the physiological range of sulfate concentrations likely to be encountered by this organism in its natural environment. F. diplosiphon has two separate sulfur deprivation responses, with low sulfate levels activating the phycobilisome remodeling response and low sulfur levels activating the chlorosis or bleaching response. The phycobilisome remodeling response results from changes in RNA abundance that are regulated at both the transcriptional and posttranscriptional levels. The potential of this response, and the more general bleaching response of cyanobacteria, to provide sulfur-containing amino acids during periods of sulfur deprivation is examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.