The classical fields with fractional derivatives are investigated by using the fractional Lagrangian formulation.The fractional Euler-Lagrange equations were obtained and two examples were studied.
Recently the traditional calculus of variations has been extended to be applicable for systems containing fractional derivatives. In this paper the passage from the Lagrangian containing fractional derivatives to the Hamiltonian is achieved. The Hamilton's equations of motion are obtained in a similar manner to the usual mechanics. In addition, the classical fields with fractional derivatives are investigated using Hamiltonian formalism. Two discrete problems and one continuous are considered to demonstrate the application of the formalism, the results are obtained to be in exact agreement with Agrawal's formalism.
The link between the treatments of constrained systems with fractional derivatives by using both Hamiltonian and Lagrangian formulations is studied. It is shown that both treatments for systems with linear velocities are equivalent. 2004 Elsevier Inc. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.