Of all the available resources given to mankind, the sunlight is perhaps the most abundant renewable energy resource, providing more than enough energy on earth to satisfy all the needs of humanity for several hundred years. Therefore, it is transient and sporadic that poses issues with how the energy can be harvested and processed when the sun does not shine. Scientists assume that electro/photoelectrochemical devices used for water splitting into hydrogen and oxygen may have one solution to solve this hindrance. Water electrolysis-generated hydrogen is an optimal energy carrier to store these forms of energy on scalable levels because the energy density is high, and no air pollution or toxic gas is released into the environment after combustion. However, in order to adopt these devices for readily use, they have to be low-cost for manufacturing and operation. It is thus crucial to develop electrocatalysts for water splitting based on low-cost and land-rich elements. In this review, I will summarize current advances in the synthesis of low-cost earth-abundant electrocatalysts for overall water splitting, with a particular focus on how to be linked with photoelectrocatalytic water splitting devices. The major obstacles that persist in designing these devices. The potential future developments in the production of efficient electrocatalysts for water electrolysis are also described.
The thermal response of a magnetic solid to an applied magnetic field constitutes magnetocaloric effect. The maximum magnetic entropy change (MMEC) is one of the quantitative parameters characterizing this effect, while the magnetic solids exhibiting magnetocaloric effect have great potential in magnetic refrigeration technology as they offer a green solution to the known pollutant-based refrigerants. In order to determine the MMEC of doped manganite and the influence of dopants on the magnetocaloric effect of doped manganite compounds, this work developed a grid search (GS)-based extreme learning machine (ELM) and hybrid gravitational search algorithm (GSA)-based support vector regression (SVR) for estimating the MMEC of doped manganite compounds using ionic radii and crystal lattice parameters as descriptors. Based on the root-mean-square error (RMSE), the developed GSA-SVR-radii model performs better than the existing genetic algorithm (GA)-SVR-ionic model in the literature by 27.09%, while the developed GSA-SVR-crystal model performs better than the existing GA-SVR-lattice model in the literature by 38.34%. Similarly, the developed ELM-GS-crystal model performs better than the existing GA-SVR-ionic model with a performance enhancement of 14.39% and 20.65% using the mean absolute error (MAE) and RMSE, respectively, as performance measuring parameters. The developed models also perform better than the existing models using correlation coefficient as the performance measuring parameter when validated with experimentally measured MMEC. The superior performance of the present models coupled with easy accessibility of the descriptors definitely will facilitate the synthesis of doped manganite compounds with a high magnetocaloric effect without experimental stress.
Electrospinning is an intensely facile methodology for the precise manufacturing of polymer nanofibers by manipulation of electrostatic force, which stunts like a driving force. In this technique, fibers produced with a diameter range between 50 to 500 nm. Two practices are made up by the scientists for electrospinning of versatile polymer. Polymers can be electrospun into ultrafine fibers in solvent solution or melt form. Tremendous progress had been made in this field in the past, and numerous applications were inaugurated. It’s a field of nanotechnology which rapidly growing due to enormous potential in creating novel applications regarding morphologies, materials structure, surface area, porosity, and Reinforcement in nanocomposite development. Fibers can be assembled in the form of nonwoven, aligned, patterned, random three-dimensional structures and sub-micron fibers. Many complications faced during electrospinning, for example, control the morphology and structure of Nanofibers, analyze surface functionality, and assembling strategies for various polymers. We need to find out various parameters for accurate fiber assembly. Here we briefly review the evolution activities in the field of electrospinning, understand its process, polymeric structure, property characterization, technology frailty, research provocations, future expectations, and resourceful applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.