Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag 44 (SR) 30 and three Au 12 Ag 32 (SR) 30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR ¼ SPhF, SPhF 2 or SPhCF 3 ). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag 2 (SR) 5 units. Positive counterions in the crystal indicate a high negative charge of 4 À per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.
Planar reconstruction patterns at the zigzag and armchair edges of graphene were investigated with density functional theory. It was unexpectedly found that the zigzag edge is metastable and a planar reconstruction spontaneously takes place at room temperature. The reconstruction changes electronic structure and self-passivates the edge with respect to adsorption of atomic hydrogen from molecular atmosphere. [5], fully attempts to use its flexible chemistry. In applications for nanoscale materials and devices, it is often the atomic and electronic structure of boundaries and surfaces that is responsible for mechanical, electronic and chemical properties.Since the properties of nanomaterial depend on the precise atomic geometry, its knowledge is crucial for focused preparation of experiments and for worthy theoretical modeling. Only this enables the further development of nanoelectronic components, nanoelectromechanical devices and hydrogen storage materials [3,6], or the usage of carbon in compound designs [7].
We report on how the transition from the bulk structure to the cluster-specific structure occurs in n-dodecanethiolate-protected gold clusters, Au(n)(SC12)m. To elucidate this transition, we isolated a series of Au(n)(SC12)m in the n range from 38 to ∼520, containing five newly identified or newly isolated clusters, Au104(SC12)45, Au(∼226)(SC12)(∼76), Au(∼253)(SC12)(∼90), Au(∼356)(SC12)(∼112), and Au(∼520)(SC12)(∼130), using reverse-phase high-performance liquid chromatography. Low-temperature optical absorption spectroscopy, powder X-ray diffractometry, and density functional theory (DFT) calculations revealed that the Au cores of Au144(SC12)60 and smaller clusters have molecular-like electronic structures and non-fcc geometric structures, whereas the structures of the Au cores of larger clusters resemble those of the bulk gold. A new structure model is proposed for Au104(SC12)45 based on combined approach between experiments and DFT calculations.
Gold nanoclusters protected by a thiolate monolayer (MPC) are widely studied for their potential applications in site-specific bioconjugate labeling, sensing, drug delivery, and molecular electronics. Several MPCs with 1-2 nm metal cores are currently known to have a well-defined molecular structure, and they serve as an important link between molecularly dispersed gold and colloidal gold to understand the size-dependent electronic and optical properties. Here, we show by using an ab initio method together with atomistic models for experimentally observed thiolate-stabilized gold clusters how collective electronic excitations change when the gold core of the MPC grows from 1.5 to 2.0 nm. A strong localized surface plasmon resonance (LSPR) develops at 540 nm (2.3 eV) in a cluster with a 2.0 nm metal core. The protecting molecular layer enhances the LSPR, while in a smaller cluster with 1.5 nm gold core, the plasmon-like resonance at 540 nm is confined in the metal core by the molecular layer. Our results demonstrate a threshold size for the emergence of LSPR in these systems and help to develop understanding of the effect of the molecular overlayer on plasmonic properties of MPCs enabling engineering of their properties for plasmonic applications.
Magic number metal nanoclusters are atomically precise nanomaterials that have enabled unprecedented insight into structure-property relationships in nanoscience. Thiolates are the most common ligand, binding to the cluster via a staple motif in which only central gold atoms are in the metallic state. The lack of other strongly-bound ligands for nanoclusters with different bonding modes has been a significant limitation in the field. Herein, we report a previously unknown ligand for gold (0) nanoclusters: N-heterocyclic carbenes (NHCs), which feature a robust metal-carbon single bond, and impart high stability to the corresponding gold cluster. The addition of a single NHC to gold nanoclusters results in significantly improved stability and catalytic properties in the electrocatalytic reduction of CO2. By varying the conditions, nature and number of equivalents of the NHC, predominantly or exclusively monosubstituted NHC-functionalized clusters result. Clusters can also be obtained with up to five NHCs, as a mixture of species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.