Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n ¼ 31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n ¼ 31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.
Long-term observational studies conducted at large (regional) spatial scales contribute to better understanding of landscape effects on population and evolutionary dynamics, including the conditions that affect long-term viability of species, but large-scale studies are expensive and logistically challenging to keep running for a long time. Here, we describe the long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia) that has been conducted since 1991 in a large network of 4000 habitat patches (dry meadows) within a study area of 50 by 70 km in the Åland Islands in Finland. We explain how the landscape structure has been described, including definition, delimitation, and mapping of the habitat patches; methods of field survey, including the logistics, cost, and reliability of the survey; and data management using the EarthCape biodiversity platform. We describe the long-term metapopulation dynamics of the Glanville fritillary based on the survey. There has been no long-term change in the overall size of the metapopulation, but the level of spatial synchrony and hence the amplitude of fluctuations in year-to-year metapopulation dynamics have increased over the years, possibly due to increasing frequency of exceptional weather conditions. We discuss the added value of large-scale and long-term population studies, but also emphasize the need to integrate more targeted experimental studies in the context of long-term observational studies. For instance, in the case of the Glanville fritillary project, the long-term study has produced an opportunity to sample individuals for experiments from local populations with a known demographic history. These studies have demonstrated striking differences in dispersal rate and other life-history traits of individuals from newly established local populations (the offspring of colonizers) versus individuals from old, established local populations. The long-term observational study has stimulated the development of metapopulation models and provided an opportunity to test model predictions. This combination of empirical studies and modeling has facilitated the study of key phenomena in spatial dynamics, such as extinction threshold and extinction debt.
Ecologists are challenged to construct models of the biological consequences of habitat loss and fragmentation. Here, we use a metapopulation model to predict the distribution of the Glanville fritillary butterfly during 22 years across a large heterogeneous landscape with 4,415 small dry meadows. The majority (74%) of the 125 networks into which the meadows were clustered are below the extinction threshold for long-term persistence. Among the 33 networks above the threshold, spatial configuration and habitat quality rather than the pooled habitat area predict metapopulation size and persistence, but additionally allelic variation in a SNP in the gene Phosphoglucose isomerase (Pgi) explains 30% of variation in metapopulation size. The Pgi genotypes are associated with dispersal rate and hence with colonizations and extinctions. Associations between Pgi genotypes, population turnover and metapopulation size reflect eco-evolutionary dynamics, which may be a common feature in species inhabiting patch networks with unstable local dynamics.
A fragmented habitat becomes increasingly fragmented for species at higher trophic levels, such as parasitoids. To persist, these species are expected to possess life-history traits, such as high dispersal, that facilitate their ability to use resources that become scarce in fragmented landscapes. If a specialized parasitoid disperses widely to take advantage of a sparse host, then the parasitoid population should have lower genetic structure than the host. We investigated the temporal and spatial genetic structure of a hyperparasitoid (fourth trophic level) in a fragmented landscape over 50 Â 70 km, using microsatellite markers, and compared it with the known structures of its host parasitoid, and the butterfly host which lives as a classic metapopulation. We found that population genetic structure decreases with increasing trophic level. The hyperparasitoid has fewer genetic clusters (K ¼ 4), than its host parasitoid (K ¼ 15), which in turn is less structured than the host butterfly (K ¼ 27). The genetic structure of the hyperparasitoid also shows temporal variation, with genetic differentiation increasing due to reduction of the population size, which reduces the effective population size. Overall, our study confirms the idea that specialized species must be dispersive to use a fragmented host resource, but that this adaptation has limits.
Alcohol-preferring AA (Alko Alcohol) and alcohol-avoiding ANA (Alko Non-Alcohol) rats have well-documented differences in their voluntary ethanol consumption and brain opioidergic systems. The aim of the present study was to investigate whether these rat lines differ in their susceptibility to morphine-induced behavioural and neurochemical sensitization. The rats were given 15 injections of morphine (10 mg/kg, s.c.) or saline every other day. Locomotor activity and release of dopamine in the nucleus accumbens were monitored after a challenge with additional morphine injections (10 mg/kg) 1 and 5 weeks after withdrawal from the repeated treatment. Morphine increased locomotion more in the previously morphine-treated rats than in the saline-treated controls. Furthermore, AA rats were more sensitive to this effect of morphine than ANA rats. Accumbal morphine-induced dopamine release was significantly higher in the morphine-treated AA than ANA rats after the first challenge injection 1 week from withdrawal, but no differences were observed after the second challenge. The brain and plasma concentrations of morphine were similar among the lines suggesting that the differences in the effects of morphine cannot be explained in terms of differential pharmacokinetics of morphine in these lines. These data show that AA rats are more susceptible to morphine-induced behavioural sensitization than ANA rats. Furthermore, it suggests that mesolimbic dopamine has at best only a transient role in the expression of opioid-induced behavioural sensitization. The relationship between the mechanisms underlying the differential sensitivity of these rat lines to the effects of repeated morphine and voluntary ethanol drinking remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.