Holography can provide a microscopic interpretation of a gravitational solution as corresponding to a particular CFT state: the asymptotic expansion in gravity encodes the expectation values of operators in the dual CFT state. Such a correspondence is particularly valuable in black hole physics. We study supersymmetric D1-D5-P black holes, for which recently constructed microstate solutions known as "superstrata" provide strong motivation to derive the explicit D1-D5 holographic dictionary for CFT operators of total dimension two. In this work we derive the explicit map between one-point functions of scalar chiral primaries of dimension (1,1) and the asymptotic expansions of families of asymptotically AdS 3 × S 3 × M supergravity solutions, with M either T 4 or K3. We include all possible mixings between single-trace and multi-trace operators. We perform several tests of the holographic map, including new precision holographic tests of superstrata, that provide strong supporting evidence for the proposed dual CFT states.
Given an asymptotically Anti-de Sitter supergravity solution, one can obtain a microscopic interpretation by identifying the corresponding state in the holographically dual conformal field theory. This is of particular importance for heavy pure states that are candidate black hole microstates. Expectation values of light operators in such heavy CFT states are encoded in the asymptotic expansion of the dual bulk configuration. In the D1-D5 system, large families of heavy pure CFT states have been proposed to be holographically dual to smooth horizonless supergravity solutions. We derive the precision holographic dictionary in a new sector of light operators that are superdescendants of scalar chiral primaries of dimension (1,1). These operators involve the action of the supercharges of the chiral algebra, and they play a central role in the proposed holographic description of recently-constructed supergravity solutions known as “supercharged superstrata”. We resolve the mixing of single-trace and multi-trace operators in the CFT to identify the combinations that are dual to single-particle states in the bulk. We identify the corresponding gauge-invariant combinations of supergravity fields. We use this expanded dictionary to probe the proposed holographic description of supercharged superstrata, finding precise agreement between gravity and CFT.
Gravitational solutions involving shockwaves have attracted significant recent interest in the context of black holes and quantum chaos. Certain classes of supersymmetric two-charge black hole microstates are described by supergravity solutions containing shockwaves, that are horizonless and smooth away from the shockwave. These configurations have been used to describe how black hole microstates absorb and scramble perturbations. In this paper we construct the first family of asymptotically flat supersymmetric three-charge microstate solutions that contain shockwaves. We identify a family of holographically dual states of the D1-D5 CFT and show that these pass a set of tests, including a precision holographic test. We find precise agreement between gravity and CFT. Our results may prove useful for constructing more general families of black hole microstate solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.