BackgroundMalaria infection during pregnancy can result in placental malaria and is associated with adverse pregnancy outcomes particularly among primigravidae. The aim of this study was to assess the prevalence and risk factors for placental malaria and its effect on pregnancy outcomes in Blue Nile state, Sudan.MethodsA cross-sectional hospital-based study was conducted consecutively during January 2012–December 2015 in three main hospitals in Blue Nile State, Sudan. At delivery, peripheral and placental blood samples were collected from consenting women. Finger prick blood was used for preparation of peripheral smears and for haemoglobin measurement. Smears were stained with Giemsa and examined microscopically for malaria parasites. Pregnancy outcomes in association to placental malaria were investigated.ResultsA total of 1149 mothers and their newborns were recruited. The mean (SD) of the age was 23.3 (5.2) years. Detection of malaria parasites was confirmed in 37.8% of the peripheral blood films and 59.3% of the placental films with Plasmodium falciparum as the only species detected. In multivariate analysis, younger age ≤23.2 years old (AOR = 3.2, 95% CI 1.9–5.5; P < 0.001), primiparae (AOR = 3.9, CI 2.1–7.6; P < 0.001), secundiparae (AOR = 2.8, 95% CI 1.5–5.1; P < 0.001, no antenatal care (ANC) visits (AOR = 11.9, 95% CI 7.8–18.1; P < 0.001) and not using bed nets (AOR = 3.5, 95% CI 1.7–6.8; P < 0.001) were risk factors for placental malaria. Education and residence were not associated with placental malaria infection. Placental malaria was significantly associated with maternal anaemia (AOR = 41.6, 95% CI 23.3–74.4; P < 0.001) and low birth weight (LBW) (AOR = 25.2, 95% CI 15.1–41.3; P < 0.001).ConclusionDuring the study, there was a high prevalence of placental malaria in Blue Nile State-Sudan, as the enhanced control activities were not practiced, leading to adverse pregnancy outcomes, such as maternal anaemia and LBW.
Background Malaria control efforts in Sudan rely heavily on case management. In 2004, health authorities adopted artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria. However, some recent surveys have reported ACT failure and a prevalent irrational malaria treatment practice. Here we examine whether the widespread use of ACT and failure to adhere to national guidelines have led to the evolution of drug resistance genes. Methods We genotyped known drug resistance markers (Pfcrt, Pfmdr-1, Pfdhfr, Pfdhps, Pfk13 propeller) and their flanking microsatellites among Plasmodium falciparum isolates obtained between 2009 and 2016 in different geographical regions in Sudan. Data were then compared with published findings pre-ACT (1992–2003). Results A high prevalence of Pfcrt76T, Pfmdr-1-86Y, Pfdhfr51I, Pfdhfr108N, Pfdhps37G was observed in all regions, while no Pfk13 mutations were detected. Compared with pre-ACT data, Pfcrt-76T and Pfmdr-1-86Y have decayed, while Pfdhfr-51I, Pfdhfr-108N and Pfdhps-437G strengthened. Haplotypes Pfcrt-CVIET, Pfmdr-1-NFSND/YFSND, Pfdhfr-ICNI and Pfdhps-SGKAA predominated in all sites. Microsatellites flanking drug resistance genes showed lower diversity than neutral ones, signifying high ACT pressure/selection. Conclusions Evaluation of P. falciparum drug resistance genes in Sudan matches the drug deployment pattern. Regular monitoring of these genes, coupled with clinical response, should be considered to combat the spread of ACT resistance.
Background Accurate diagnosis of malaria infection is essential for successful control and management of the disease. Both microscopy and rapid diagnostic tests (RDTs) are recommended for malaria diagnosis, however, RDTs are more commonly used. The aim of the current study was to assess the performance of microscopy and RDTs in the diagnosis of Plasmodium falciparum infection using a nested polymerase chain reaction (PCR) assay as the gold standard. Methods A cross-sectional study was carried out in Kassala Hospital, eastern Sudan. A total of 341 febrile participants of all ages were recruited. Blood specimens were collected and malaria testing was performed using an RDT (SD Bioline Malaria Ag Pf), microscopy and nested PCR. The sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively) of microscopy and the RDT were investigated. Results The prevalence of P. falciparum malaria infections in this study was 22.9%, 24.3% and 26.7% by PCR, microscopy and RDT, respectively. Compared with microscopy, the RDT had slightly higher sensitivity (80.7% vs 74.3%; p=0.442), equivalent specificity (89.3% vs 90.4%), a similar PPV (69.2% vs 69.8%) and a higher NPV (94.0% vs 92.2%). Conclusions The diagnostic performance of the RDT was better than that of microscopy in the diagnosis of P. falciparum malaria when nested PCR was used as the gold standard.
The aim of the present study was to investigate the prevalence of submicroscopic infections and to assess its impact on maternal anaemia and low birth weight. A cross-sectional study was carried out with 1149 consented pregnant women who delivered at 3 main hospitals in the Blue Nile State, between January 2012 and December 2015. From a matched maternal peripheral, placental maternal side, and cord blood sample, blood films and dried spots were prepared for microscopic examination and nested polymerase chain reaction (n-PCR), respectively. 107 out of 447 negative blood films were found to have submicroscopic infection detected using n-PCR in any of the three compartments. Placental samples had a significantly higher prevalence (142) of submicroscopic infections compared with the peripheral (6.5%) and cord (8.1%) samples. The mean (SD) of the maternal haemoglobin (Hb) was significantly lower in cases with submicroscopic parasitaemia (10.9 (0.8) vs. 12.1 (0.7) g/dl, P<0.001) compared with those who had no submicroscopic parasitaemia. Submicroscopic malaria infection was associated with anaemia (OR 19.7, (95% CI, 10.3–37.8)). Thirty-eight babies born to women with submicroscopic infections were low birth weight (LBW) and was significantly lower in submicroscopic parasitaemia (2.663 (0.235) vs. 2.926 (0.341) kg, P<0.001). Submicroscopic malaria infection was associated with LBW (OR = 2.7, (95% CI, 1.2–5.6)). There is a high incidence of submicroscopic infections in any of the three compartments regardless of age or parity. Submicroscopic infection is a risk of maternal anaemia and low birth weight in women in this area of high seasonal malaria transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.