Abstract:Background: Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in all tissues. They are present in bone marrow, and can differentiate in vitro into neurons, glial cells and myofibroblasts . MSCs have been proposed as sources of stem cells for regeneration of the CNS. Thus, one of the goals of regenerative medicine is to regenerate damaged brain tissue and spinal cord by harnessing the power of stem cells to initiate neurogenesis in damaged areas of the brain. Objective: The aim of this work is to study in-vitro induced neurogenesis using MSCs as model of stem cells. Methodology : Bone marrow-MSCs were isolated, expanded and passaged. MSCs were identified using morphology and flowcytometric analysis. Co-expression of Oct ¾ was done. MSCs were induced to neural lineage using Neural Induction Media (NIM) : a cocktail of retinoic acid dissolved in DEMSO, recombinant human Fibroblast Growth Factor (FGF) basic, recombinant human Epidermal Growth Factor (EGF) and Insulin-like Growth Factor I (IGF-I) . Neural induction was verified morphologically, and immunologically using GFAP positivity and nestin expression. Results: BM-MSCs express CD44 and OCT ¾ which decrease with age. MSCs induced with NIM show morphological changes consistent with neurogenesis, positive GFAP and nestin expression as compared to the uninduced cells. Conclusion: MSCs isolated from bone marrow aspirate and can be differentiated into GFAP positive neural cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.