Abstract-Dementia is a growing problem in societies with aging populations, not only for patients, but also for family members and for the society in terms of the associated costs of providing health care. Helping patients to maintain a degree of independence in their home environment while ensuring their safeties is considered as a positive step forward for addressing individual needs of dementia patients. A common symptom for dementia patients including those with Alzheimer's Disease and Related Dementia (ADRD) is sleep disturbance, patients being awake at night and asleep during the day. One of the problems with night time sleep disturbance in dementia patients is the possible accidental falls of patients in the dark environment. An issue associated with un-hourly sleeping behavior in these patients is the lighting condition of their surroundings. Clinical studies indicate that appropriate level of lighting can help to restore the rest-activity cycles of ADRD patients. This study tackles this problem by generating machine learning solutions for controlling the lighting conditions of multiple rooms in the house in different hours based on patterns of behaviors generated for the patient. Several neural network oriented classification methods are investigated and their feasibilities are assessed with a collection of synthetic data capturing two conditions of balanced and unbalanced inter-class samples. The classifiers are utilized within two centric and distributed lighting control architectures. The results indicate the feasibility of the distributed architecture in achieving a high level of classification performance resulting in adequate control over lighting conditions of the house in various time periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.