BackgroundPerilipin1, a lipid droplet associated protein has an important role in the regulation of lipolysis and lipid storage in adipocytes. Perilipin1 is also expressed in foam cells of atheroma plaques and could therefore play a role in the accumulation of lipids in arterial wall and in the development of atherosclerosis. The aim of the study was to investigate this possible role of perilipin1 in atherogenesis.MethodsMice deficient in perilipin1 (Plin1-/-) were crossed with Ldlr-/- mice. Ldlr-/- and Plin1-/- Ldlr-/- mice received an atherogenic diet during 10 or 20 weeks. Blood pressure and plasma lipids concentrations were measured. Aortas were collected at the end of the atherogenic diet periods for quantification of atheroma lesions (en face method), histological and immunohistological studiesResultsLdlr-/- and Plin1-/- Ldlr-/- mice had comparable blood pressure and plasma lipids levels. Plin1-/- Ldlr-/- mice had a lower body weight and decreased adiposity. The atherosclerotic lesion area in Plin1-/-Ldlr-/- mice was moderately increased after 10 weeks of atherogenic diet (ns) and significantly higher after 20 weeks (p < 0.01). Histology of atheroma plaques was comparable with no sign of increased inflammation in Plin1-/- Ldlr-/- mice.ConclusionPerilipin1 ablation in mice results in increased atherosclerosis independently of modifications of risk factors such as raised blood pressure or plasma lipids levels. These data strongly support an atheroprotective role for perilipin1.
Context. Brassica rapa is considered as natural source of antioxidants and is used to treat diabetes. Objective. Our study carried the impact of glucotoxicity induced in vivo and in vitro in vascular smooth muscle cells (VSMCs) in Psammomys and the therapeutic effect of Brassica rapa (AEBr). Materials and Methods. We administered a hyperglucidic diet (30% sucrose) for 9 months and a treatment for 20 days with AEBr at 100 mg/kg. VSMCs were submitted to D-Glucose (0.6%) for 48 hours and treated with AEBr (2100 μg/mL) for 24 hours. We measured, in blood metabolic parameters, the redox statues and inflammatory markers in adipose tissue. Histological study was effectuated in liver. In VSMCs, we measured markers of glucotoxicity (IRS1p Serine, AKT) inflammation (NO, MCP1, TNFα, and NF-κB) and oxidative stress (oxidants and antioxydants markers). Cell viability and apoptosis were estimated by the morphological study. Results. AEBr corrects the metabolic parameters and inflammatory and oxidative markers in blood and homogenate tissue and reduces lipid droplets in liver. It induces, in VSMCs, a significant decrease of IRS1p serine, cyt c, NO, MCP1, TNFα, NF-κB, protein, and lipid oxidation and increases cell viability, AKT, ERK1/2, catalase, and SOD activity. Conclusion. Brassica enhanced the antidiabetic, anti-inflammatory, and antioxidant defense leading to the protection of cardiovascular diseases.
Background. Lipotoxicity is characterized by a metabolic disturbance leading to the development of nonalcoholic fatty liver disease (NAFLD). Some medicinal plant extracts exert hepatoprotective activity by modulating oxidative stress, inflammation, and metabolic disorders. Scolymus hispanicus or the golden thistle can be considered an important natural source of antioxidants. In traditional medicine, the consumption of this plant is recommended for diseases of the liver and intestines. Objective. In this study, we aimed to determine the effects of Scolymus hispanicus on a hyperfatty diet- (HFD-) induced metabolic disorders, oxidative stress, and inflammation. Materials and Methods. Our experiment focused on the administration of an HFD (40%) in Rattus norvegicus for 2 months and treatment with the aqueous extract of Scolymus hispanicus at a rate of 100 mg/kg during the last eight days of experimentation. In this context, several aspects were studied: the evaluation of blood biochemical parameters, liver function such as lipids and glycogen, markers of oxidative stress (TBARS, carbonyl proteins, advanced oxidation proteins, catalase, and SOD) and inflammation (NO and NFkB), morphological study of hepatocytes in primary culture, and histological study of the liver. Results. Lipotoxicity induced metabolic disorders, both serum and tissue. HFD induced an increase in the total lipids and a decrease in glycogen reserve and an alteration in the oxidant-antioxidant balance. HFD induced an increase in markers of liver damage, which resulted in NAFLD, confirmed by histological study and hepatocytes cell culture. Scolymus appears to have lipid-lowering, hypoglycemic, anti-inflammatory and antioxidant properties. It improved glucose tolerance and the condition of fatty liver disease. Conclusion. Golden thistle improves glucose tolerance and hyperlipidemia and ameliorates hepatic steatosis by reducing oxidative stress, inflammation, and lipid accumulation. Its incorporation into a dietary program or as an aliment supplement would prevent hepatic complications associated with an HFD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.