The evolution of microstructure, texture, and mechanical properties of an Mg–1.43Nd (wt%) alloy is investigated after processing by high‐pressure torsion at room temperature through five turns and isochronal annealing for 1 h at 150, 250, 350, and 450 °C using electron backscatter diffraction and Vickers microhardness. The alloy exhibits a good thermal stability up to annealing at 250 °C, with mean grain size of ≈0.65 μm. The microhardness shows an initial hardening after annealing at 150 °C and then a subsequent softening. The deformation texture, a basal texture shifted 60° away from the shear direction (SD), is retained during annealing up to 250 °C. In contrast, a basal texture with symmetrical splitting toward SD is developed after annealing at 350 °C. The precipitation sequence and their pinning effects are responsible for the age‐hardening, stabilization of grain size, and the texture modification. The kinetics of grain growth in the Mg–1.43Nd alloy follows two stages depending on the temperature annealing range, with an activation energy of ≈26 kJ mol−1 in the low temperature range of 150–250 °C and ≈147 kJ mol−1 in the high temperature range of 250–450 °C.
The microstructure and texture evolution of an AZ31 alloy were investigated after hot rolling and subsequent annealing using electron backscatter diffraction (EBSD). First, the alloy was hot-rolled at 350 °C up to low, medium and high strain (20, 50 and 85% of thickness reduction, respectively). The alloy samples where then annealed at 350 °C for 2, 10 and 60 minutes. The effect of strain level and annealing on corrosion behavior in seawater was also evaluated using electrochemical tests. At low strain, the microstructure was characterised by the absence of twinning, mainly due to the prior thermo-mechanical history of the as-received alloy. However, various modes of twinning were observed at medium strain. At high strain, the dynamic recrystallization process resulted in a microstructure with a typical basal texture. The results demonstrate that twins are responsible for the deviation of {0002} basal poles from normal towards the transversal direction. Annealing at 350°C for up to 60 min led to normal grain growth in all the samples. In medium and highly strained samples, the deformation texture was retained, while the low strain sample underwent noticeable changes due to the absence of dynamic recrystallization. A synergetic effect of grain refinement and texture weakening was responsible for the alloy's enhanced corrosion resistance.
The current study seeks to further understand the precipitation sequence in a WE54 Mg alloy using in situ X-ray diffraction, micro-hardness and electrical resistivity during ageing at 250 and 300 °C. We show that the mean hardening effect is due to the precipitation of β' and β1metastable phases. The analysis of the kinetics of the precipitation shows that both phases nucleate at grain boundaries and within grains in the form of plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.