L-DNase II is derived from its precursor leucocyte elastase inhibitor (LEI) by post-translational modification. In vitro, the conversion of LEI into L-DNase II can be induced by incubation of LEI at an acidic pH. In this study, we proposed to analyze the effects of intracellular acidification on this transformation. Amiloride derivatives, like hexamethylene amiloride (HMA), are known to provoke a decrease of cytosolic pH by inhibiting the Na + /H + antiport. In BHK cells, treatment with HMA-induced apoptosis accompanied by an increase in L-DNase II immunoreactivity and L-DNase II enzymatic activity. Overexpression of L-DNase II precursor led to a significant increase of apoptosis in these cells supporting the involvement of L-DNase II in HMA induced apoptosis. As previously shown in other cells, etoposideinduced apoptosis did not activate L-DNase. On the contrary, LEI overexpression significantly increased cell survival in etoposide-induced apoptosis. Together these results suggest differential roles of LEI and L-DNase II in response to different types of apoptotic inducers.
The discovery of caspase‐mitochondrial pathway counts as one of the most important discovery in apoptosis biochemistry. Today, however, we begin to recognize its limits. Inhibition of caspase does not prevent cell death in many mammalian models. Targeted disruption of caspases does not impair every type of apoptosis. Other pathways, caspase independent, are now described. Here we present one of these pathways. It is a serine‐protease dependent pathway and its key event is the transformation of LEI (a serine protease inhibitor) into L‐DNase II (an endonuclease). When using this apoptotic pathway the cell activates, at the same time, its endonuclease activity (L‐DNase II appears) and its protease activity (there is a release of inhibition of proteases).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.