Anaplastic thyroid carcinoma (ATC) is the rarest type of thyroid cancer, but is the common cause of death from these tumors. The aggressive behavior of ATC makes it resistant to the conventional therapeutic approaches. Thus, the present study was designed to evaluate the anti-ATC efficacy of the piperidone analogue of curcumin (PAC). We have shown that PAC induces apoptosis in thyroid cancer cells in a time-dependent fashion through the mitochondrial pathway. Immunoblotting analysis revealed that PAC suppressed the epithelial-to-mesenchymal transition (EMT) process in ATC cells by upregulating the epithelial marker E-cadherin and reducing the level of the mesenchymal markers N-cadherin, Snail, and Twist1. This anti-EMT effect was confirmed by showing PAC-dependent inhibition of the proliferation and migration abilities of ATC cells. Furthermore, PAC inhibited the AKT/mTOR pathway in ATC cells. Indeed, PAC downregulated mTOR and its downstream effectors p70S6K and 4E-BP1 more efficiently than the well-known mTOR inhibitor rapamycin. In addition to the promising in vitro anticancer efficacy, PAC significantly suppressed the growth of humanized thyroid tumor xenografts in mice. Together, these findings indicate that PAC could be considered as promising therapeutic agent for anaplastic thyroid carcinomas.
Anaplastic thyroid carcinoma (ATC) is the rarest type of thyroid cancer but is the common cause of death from these tumors. The aggressive behavior of ATC makes it resistant to the conventional therapeutic approaches. Thus, the present study was designed to evaluate the anti-ATC efficacy of the curcumin analogue PAC. We have shown that PAC induces apoptosis in thyroid cancer cells in a time-dependent fashion through the mitochondrial pathway. Immunoblotting analysis revealed that PAC suppressed the epithelial-to-mesenchymal transition (EMT) process in ATC cells by increasing the epithelial marker E-cadherin and reducing the level of the mesenchymal markers N-cadherin, Snail, Slug and Twist1. This anti-EMT effect was confirmed by showing PAC-dependent inhibition of the proliferation and migration abilities of ATC cells. In addition, PAC downregulated ALDH1 and suppressed the formation of thyroid tumorespheres in vitro. Interestingly, PAC inhibited the AKT/mTOR pathway in ATC cells. Indeed, PAC downregulated mTOR and its downstream effectors p70S6K and 4E-BP1 more efficiently than the well-known mTOR inhibitor rapamycin. In addition to the promising in vitro anticancer efficacy, PAC significantly suppressed the growth of humanized thyroid tumor xenografts in mice. Together, these findings indicate that PAC could be considered as promising therapeutic agent for anaplastic thyroid carcinomas.
Because of our interest in developing new hybrid peptide radioconjugates with suitable biochemical properties for multiple-receptors targeting properties that are overexpressed on many human cancers especially ovarian cancer, we have synthesized 68Ga-NODAGA-MUC1 and 68Ga-NODAGA-MUC1-FA hybrid peptide conjugates using a straightforward and one-step simple reaction. Radiochemical yields were found to be higher than 95% (decay corrected), with a total synthesis time of less than 20 min. Radiochemical purities were always higher than 95% without HPLC purification. In vitro studies on KB cancer cells showed that substantial amounts of the radioconjugates were associated with cell fractions and held great affinities and specificities toward the KB cell line. In vivo characterization in normal female Balb/c mice revealed rapid blood clearance of these radioconjugates with excretion predominantly by the urinary system. Biodistribution studies in nude mice bearing human KB cell line xenografts demonstrated significant tumor uptake and favorable biodistribution profile for 68Ga-NODAGA-MUC1-FA hybrid peptide conjugate compared to the 68Ga-NODAGA-MUC1 peptide monomeric counterpart. The uptake in the tumors was blocked by the excess injection of hybrid peptide, suggesting a receptor-mediated process. These results demonstrate that 68Ga-NODAGA-MUC1-FA hybrid peptide conjugate may be useful as a molecular probe for early detection and staging of folate and MUC1 receptor-positive cancers such as ovarian cancer and their metastasis as well as monitoring tumor response to treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.