Data mining is a latest emerging technique, which is mainly used to inspect large database in order to discover hidden knowledge and information about customers' behaviors. With the increasing contest in the retail industry, the main focus of superstore is to classify valuable customers accurately and quickly among the large volume of data. The decision tree algorithm is a more general data classification function algorithm based on machine learning. In this paper the concept of Recency, Frequency and Monetary is introduced, which is usually used by marketing investigators to develop marketing strategies, to find important patterns. Conventional ID3 algorithm is modified by horizontally splitting the sample of customer purchasing RFM dataset and then classification rules are discovered to predict future customer behaviors by matching pattern. The dataset has been accessed from blood transfusion service center and has 5 attributes and 748 instances. The experimental result shows that the proposed HPID3 is more effective than conventional ID3 in terms of accuracy and processing speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.