The growing world population is closely associated with the increased demand of safe drinking water and sustainable energy production. This drives the focus of the scientific community to work toward water remediation and clean energy generation. The combination of photoelectrooxidation of pollutants at the anode with simultaneous hydrogen gas production at the cathode is a smart strategy to address these problems. Herein, we have designed a bifunctional photoelectrocatalytic system consisting of a self-standing photoanode to degrade the water pollutant molecules with simultaneous production of molecular hydrogen at the cathode. The photoanode was prepared by coating Bi2O3 over the surface of self-standing TiO2 nanorods. Thus, prepared photoelectrodes show high degradation efficiency for rhodamine molecules, where direct oxidation of rhodamine by the holes generated under solar light illumination was detrimental for its activity. During simultaneous pollutant removal and energy production experiments, the anode shows 100% degradation of pollutant molecules while the cathode shows high hydrogen gas production (128 mM cm–2 h–1). The prepared composite showed higher efficiency of visible-light absorbance, high charge generation capability, and low charge transfer resistance at the interface as determined via several characterizations, compared to the bare titania. The catalyst is easy to prepare and robust in activity for several kinds of pollutant molecules tested. Its robust activity, high stability, and durability open up an avenue for the wastewater treatment with simultaneous renewable energy production technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.