Buildings in south of Iraq were designed for gravity loads only. Recent studies showed that the Badra-Amarah fault at the Iraq-Iran boarder is an active fault and could suffer a major damage. Hence seismic evaluation of existing buildings is getting more importance. The objective of this paper is to assess the seismic performance of two reinforced concrete buildings with six floors each, one has a shear wall and the other has not. The concentrated plasticity with nonlinear time history is adopted for the analysis. The spectrum matching method is used to scale three time-acceleration records to the expected seismic level in the region. Three different codes are used for the analysis, the International building code-2012, the Uniform building code-1997 and the Iraqi seismic code-2017. Comparison of results showed that IBC-2012 gave the most conservative results in displacements, number and performance of plastic hinges and base shear. The Iraqi code gave the least values within 60% for the base shear and 18-50% for drifts. As a conclusion, the analyzed buildings are a little beyond the elastic level according to the Iraqi code, beyond the immediate occupancy level according to the UBC-1997 and near the collapse prevention level according to IBC-2012.
A cast in drilled hole (CIDH) piles are to be used as a bridge foundation. The geotechnical data of the site indicate that the soil profile consist of 10m normally consolidated soft clay underlined by a thick layer of over consolidated stiff clay. Three different pile diameters of 1.6m, 1.8m and 2m are selected from the analysis to be used for a depth of 30m below ground level and an average height of 5m above ground level. To investigate behavior of these (CIDH) piles under lateral loads, an analytical parametric study is performed to evaluate the ultimate lateral load capacity of the piles (which is assumed to cause a pile head displacement of 10% of the pile diameter) and the distribution of shear force and bending moment along the depth of the piles. The soil is represented by two ways, linear and nonlinear material. For the linear case, a linear brick finite element is used to represent the soil with either a linearly variable modulus of elasticity from ground level to the bottom of the pile or a constant modulus of elasticity for the top 10 meters (the soft clay) while linearly varying for the next 20m. For the nonlinear case, the P-Y curves method is used to represent the soil by nonlinear springs at intervals of 1 meter. In both cases (linear and nonlinear soil), the piles are assumed to behave linearly. Results obtained indicate that the ultimate lateral load capacity of the piles from the nonlinear case is in the range of 50% to 60% of the linear case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.