The equal width wave (EW) equation is a model partial differential equation for the simulation of one-dimensional wave propagation in nonlinear media with dispersion processes. The EW-Burgers equation models the propagation of nonlinear and dispersive waves with certain dissipative effects. In this work, we derive exact solitary wave solutions for the general form of the EW equation and the generalized EW-Burgers equation with nonlinear terms of any order. We also derive analytical expressions of three invariants of motion for solitary wave solutions of the generalized EW equation.
The Gardner equation is an extension of the Korteweg-de Vries (KdV) equation. It exhibits basically the same properties as the classical KdV, but extends its range of validity to a wider interval of the parameters of the internal wave motion for a given environment. In this paper, we derive exact solitary wave solutions for the generalized Gardner equation that includes nonlinear terms of any order. Unlike previous studies, the exact solutions are derived without assuming their mathematical form. Illustrative examples for internal solitary waves are also provided. The traveling wave solutions can be used to specify initial data for the incident waves in internal waves numerical models and for the verification and validation of the associated computed solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.