The aggregation of proteins into oligomers and amyloid fibrils is characteristic of several neurodegenerative diseases, including Parkinson disease (PD). In PD, the process of aggregation of α-synuclein (α-syn) from monomers, via oligomeric intermediates, into amyloid fibrils is considered the disease-causative toxic mechanism. We developed α-syn mutants that promote oligomer or fibril formation and tested the toxicity of these mutants by using a rat lentivirus system to investigate loss of dopaminergic neurons in the substantia nigra. The most severe dopaminergic loss in the substantia nigra is observed in animals with the α-syn variants that form oligomers (i.e., E57K and E35K), whereas the α-syn variants that form fibrils very quickly are less toxic. We show that α-syn oligomers are toxic in vivo and that α-syn oligomers might interact with and potentially disrupt membranes. P arkinson disease (PD) is the most common movement disorder, currently affecting approximately 2% of the population older than age 60 y. Prominent neuropathological hallmarks of PD are the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain (1) and the presence of α-syn-containing intracellular inclusions: Lewy bodies (LBs) and Lewy neurites (2). α-Syn, a 140-aa protein physiologically found in presynaptic terminals of neurons, is the major fibrillar protein in LBs and Lewy neurites in sporadic and inherited PD. Moreover, point mutations (A53T, A30P, E46K) and gene multiplications of human WT (hWT) α-syn are related to rare familial autosomal-dominant forms of early-onset PD (3-6), suggesting that increased gene dosage and aberrant protein structure may accelerate disease onset and progression.Recent reports indicate that the accumulation of α-syn can result in the formation of intermediate-state oligomers, and oligomers of different shapes and sizes have been described (7-10). These oligomers interact with lipids, disrupt membranes (7,8), and cause cell death in vitro (10, 11) and in nonmammalian models, such as Caenorhabditis elegans and Drosophila melanogaster (12). However, we are aware of no previous direct in vivo demonstration of the toxicity of α-syn oligomers in mammals.We aim to establish a model that allows specific testing of the effects of α-syn oligomerization in vitro and in vivo. To elucidate the causal structure-toxicity relationship of these oligomeric protein assemblies in a mammalian system, we designed "conformation-trapped" mutants based on structural modeling of α-syn fibrils (13, 14). Structurally, amyloid fibrils of α-syn are composed of cross-β-sheets (15). Residues from approximately 30 to 110 of α-syn form the core of the fibrils, whereas the approximately 30 N-terminal residues are heterogeneous and the approximately 30 C-terminal residues are flexible (13,14,16,17). Based on our structural model, recently developed from NMR data, the core of α-syn fibrils comprises five β-strands reminiscent of a five-layered "β-sandwich" (14). Several loops adjacent to and between the strands ar...
Amyloids are highly organized cross β-sheet-rich protein or peptide aggregates that are associated with pathological conditions including Alzheimer's disease and type II diabetes. However, amyloids may also have a normal biological function as demonstrated by fungal prions, which are involved in prion replication, and the amyloid protein Pmel17, which is involved in mammalian skin pigmentation. Here, we show that peptide and protein hormones in secretory granules of the endocrine system are stored in an amyloid-like cross β-sheet-rich conformation. Thus, in contrast to the original association of amyloids with diseases, functional amyloids in the pituitary and other organs can contribute to normal cell and tissue physiology.Cells transport newly synthesized secretory proteins and peptides in vesicles via the endoplasmic reticulum (ER) and Golgi for release into the extracellular space (1,2). Some secretory cells, such as neuroendocrine cells and exocrine cells, store secretory proteins and peptides for extended time periods in a highly concentrated form in membrane-enclosed electron-dense cores termed "secretory granules" (1,3,4), which are derived from the Golgi complex. The dense cores of these granules are made up of large, insoluble secretory protein and peptide aggregates that are formed by self-association (4-6). The granules are not amorphous, but possess a distinct molecular organization, possibly of crystalline structures (7) or large intermolecular aggregates (5,8).Amyloid fibrils are cross-β-sheet structures that are primarily associated with several neurodegenerative diseases including Alzheimer's disease. However, amyloid fibril formation also provides biologically functional entities termed functional amyloids (9) and are present in Escherichia coli (10), silkworm (11), fungi (12), and mammalian skin (13). The cross-β-sheet motif is composed of intermolecular β-sheets along the fibril axis with the β-strands aligned perpendicularly to the fibril axis. An amyloid-like structure of peptide and protein hormones in secretory granules could explain most of their properties.To address the question whether peptide and protein hormones are stored in secretory granules in an amyloid-like aggregation state, we first asked if a diverse set of peptide and protein hormones could form amyloids in vitro at granule-relevant pH 5.5. 42 peptide and protein hormones from multiple species and organs were selected randomly, some linear and some cyclic, with a variety of different three dimensional structures (Table S2). This set of hormones was assayed for a capacity to form amyloids by the amyloid-specific dyes thioflavin T (Thio T), congo red (CR), luminescent conjugated polyelectrolyte probes (LCP), by the conformational transition into β-sheet-rich structure measured by circular dichroism (CD), and by the presence of fibrils in electron microscopy (EM) images. Furthermore, x-ray fiber diffraction was measured for a subset of hormones (Table S1). Only 10 hormones out of the 42 showed significant formation of...
The aggregation of proteins into amyloid fibrils is associated with several neurodegenerative diseases. In Parkinson's disease it is believed that the aggregation of ␣-synuclein (␣-syn) from monomers by intermediates into amyloid fibrils is the toxic diseasecausative mechanism. Here, we studied the structure of ␣-syn in its amyloid state by using various biophysical approaches. Quenched hydrogen/deuterium exchange NMR spectroscopy identified five -strands within the fibril core comprising residues 35-96 and solid-state NMR data from amyloid fibrils comprising the fibril core residues 30 -110 confirmed the presence of -sheet secondary structure. The data suggest that 1-strand interacts with 2, 2 with 3, 3 with 4, and 4 with 5. High-resolution cryoelectron microscopy revealed the protofilament boundaries of Ϸ2 ؋ 3.5 nm. Based on the combination of these data and published structural studies, a fold of ␣-syn in the fibrils is proposed and discussed.amyloid ͉ NMR ͉ Parkinson's disease ͉ structure ͉ aggregation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.