Losses in control valves drag down the average overall efficiency of electrohydraulic systems to only about 22% from nearly 75% for standard pump-motor sets. For achieving higher energy efficiency in slower systems, direct pump control replacing fast-response valve control is being put in place through variable-speed motors. Despite the promise of a quicker response, displacement control of pumps has seen slower progress for exhibiting undesired oscillation with respect to the demand in some situations. Hence, a mechatronic simulation-based design is taken up here for a variable-displacement pump–controlled system directly feeding a double-acting single-rod cylinder. The most significant innovation centers on designing an axial-piston pump with an electrohydraulic compensator for bi-directional swashing. An accumulator is conceived to handle the flow difference in the two sides across the load piston. A solenoid-driven sequence valve with P control is proposed for charging the accumulator along with setting its initial gas pressure by a feedforward design. Simple proportional–integral–derivative control of the compensator valve is considered in this exploratory study. Appropriate setting of the gains and critical sizing of the compensator has been obtained through a detailed parametric study aiming low integral absolute error. A notable finding of the simulation is the achievement of the concurrent minimum integral absolute error of 3.8 mm s and the maximum energy saving of 516 kJ with respect to a fixed-displacement pump. This is predicted for the combination of the circumferential port width of 2 mm for the compensator valve and the radial clearance of 40 µm between each compensator cylinder and the paired piston.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.