Discovering the set of closed frequent patterns is one of the fundamental problems in Data Mining. Recent Constraint Programming (CP) approaches for declarative itemset mining have proven their usefulness and flexibility. But the wide use of reified constraints in current CP approaches leads to difficulties in coping with high dimensional datasets. In this paper, we proposes the ClosedPattern global constraint to capture the closed frequent pattern mining problem without requiring reified constraints or extra variables. We present an algorithm to enforce domain consistency on ClosedPattern in polynomial time. The computational properties of this algorithm are analyzed and its practical effectiveness is experimentally evaluated.
International audienceData mining is the study of how to extract information from data and express it as useful knowledge. One of its most important subfields, pattern mining, involves searching and enumerating interesting patterns in data. Various aspects of pattern mining are studied in the theory of computation and statistics. In the last decade, the pattern mining community has witnessed a sharp shift from efficiency-based approaches to methods which can extract more meaningful patterns. Recently, new methods adapting results from studies of economic efficiency and multi-criteria decision analyses such as Pareto efficiency, or skylines, have been studied. Within pattern mining, this novel line of research allows the easy expression of preferences according to a dominance relation. This approach is useful from a user-preference point of view and tends to promote the use of pattern mining algorithms for non-experts. We present a significant extension of our previous work [1] and [2] on the discovery of skyline patterns (or “skypatterns”) based on the theoretical relationships with condensed representations of patterns. We show how these relationships facilitate the computation of skypatterns and we exploit them to propose a flexible and efficient approach to mine skypatterns using a dynamic constraint satisfaction problems (CSP) framework.We present a unified methodology of our different approaches towards the same goal. This work is supported by an extensive experimental study allowing us to illustrate the strengths and weaknesses of each approach
Abstract. Sequential pattern mining (SPM) under gap constraint is a challenging task. Many efficient specialized methods have been developed but they are all suffering from a lack of genericity. The Constraint Programming (CP) approaches are not so effective because of the size of their encodings. In [7], we have proposed the global constraint PREFIX-PROJECTION for SPM which remedies to this drawback. However, this global constraint cannot be directly extended to support gap constraint. In this paper, we propose the global constraint GAP-SEQ enabling to handle SPM with or without gap constraint. GAP-SEQ relies on the principle of right pattern extensions. Experiments show that our approach clearly outperforms both CP approaches and the state-of-the-art cSpade method on large datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.