Abstract-In this paper, a wireless cooperative network is considered, in which multiple source-destination pairs communicate with each other via an energy harvesting relay. The focus of this paper is on the relay's strategies to distribute the harvested energy among the multiple users and their impact on the system performance. Specifically, a non-cooperative strategy is to use the energy harvested from the i-th source as the relay transmission power to the i-th destination, to which asymptotic results show that its outage performance decays as log SNR SNR . A faster decaying rate, 1 SNR , can be achieved by the two centralized strategies proposed this the paper, where the water filling based one can achieve optimal performance with respect to several criteria, with a price of high complexity. An auction based power allocation scheme is also proposed to achieve a better tradeoff between the system performance and complexity. Simulation results are provided to confirm the accuracy of the developed analytical results and facilitate a better performance comparison.
International audienceWe describe a noncooperative interference alignment (IA) technique which allows an opportunistic multiple input multiple output (MIMO) link (secondary) to harmlessly coexist with another MIMO link (primary) in the same frequency band. Assuming perfect channel knowledge at the primary receiver and transmitter, capacity is achieved by transmiting along the spatial directions (SD) associated with the singular values of its channel matrix using a water-filling power allocation (PA) scheme. Often, power limitations lead the primary transmitter to leave some of its SD unused. Here, it is shown that the opportunistic link can transmit its own data if it is possible to align the interference produced on the primary link with such unused SDs.We provide both a processing scheme to perform IA and a PA scheme which maximizes the transmission rate of the opportunistic link. The asymptotes of the achievable transmission rates of the opportunistic link are obtained in the regime of large numbers of antennas. Using this result, it is demonstrated that depending on the signal-to-noise ratio and the number of transmit and receive antennas of the primary and opportunistic links, both systems can achieve transmission rates of the same order
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.