Erythema is an inflammatory condition of the skin that is commonly used as a feature to monitor the progression of cutaneous diseases or treatment induced side effects. In radiation therapy, skin erythema is routinely assessed visually by an expert using standardized grading criteria. However, visual assessment (VA) is subjective and commonly used grading tools are too coarse to score the onset of erythema. Therefore, an objective method capable of quantitatively grading early erythema changes may help identify patients at higher risk for developing severe radiation induced skin toxicities. The purpose of this study is to investigate the feasibility of using hyperspectral imaging (HSI) for quantitative assessment of early erythema and to characterize its performance against VA documented on conventional digital photographic red-green-blue (RGB) images. Erythema was induced artificially on 3 volunteers in a controlled pilot study; and was subsequently measured using HSI and color imaging. HSI and color imaging data was analyzed using linear discriminant analysis (LDA) to perform classification. The classification results, including accuracy, and precision, demonstrated that HSI is superior to color imaging in skin erythema assessment.
We propose a feature-based approach for vehicle detection in aerial imagery with 11.2 cm/pixel resolution. The approach is free of all constraints related to the vehicles appearance. The scale-invariant feature transform (SIFT) is used to extract keypoints in the image. The local structure in the neighbouring of the SIFT keypoints is described by 128 gradient orientation based features. A Support Vector Machine is used to create a model which is able to predict if the SIFT keypoints belong to or not to car structures in the image. The collection of SIFT keypoints with car label are clustered in the geometric space into subsets and each subset is associated to one car. This clustering is based on the Affinity Propagation algorithm modified to take into account specific spatial constraint related to geometry of cars at the given resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.